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PREFACE 

Recently many interests have been shown to study the rotational motion of 

molecules in solids of alkali halide crystals doped with polar impurities which 

shows pronounced effects on optical, thermal and electrical properties of the host 

crystals, playing a dominant role in science and technology. 

A free molecule containing N atoms has 3N-6 degree of vibrational freedom, 

three degree of translational freedom and three degrees of rotational freedom. 

When a molecule is introduced substitutionally into a lattice, the vibrational 

degrees of freedom are usually changed relatively small by the matrix. The 

translational degrees of freedom of the molecules are the same as the translational 

degrees of freedom of an impurity atom, i.e., they manifest themselves as 

impurity modes. We have considered the third group of degree of freedom, those 

connected with the rotational inertia of the molecule. 

Low temperature infra-red absorption, thermal conductivity and specific heat 

measurements have shown a better agreement with the theoretical one by optical 

spectroscopy method on Devonshire model. This model explains gross features 

of the IR data except the tunneling translations which were not observed in optical 

measurements that have been discussed in details. 

By means of infrared-absorption, thermal-conductivity, and specific-heat 

measurements at low temperatures, the problem of rotational motion of molecules 

in solids has been studied using CN− ions substituted for the halogen in KCl, 

KBr, KI, RbCl, NaCl, and NaBr. Energy levels associated with the ion performing 

free rotation, hindered rotation, oscillation, and tunneling motion were observed. 

It was found that a simple 3-dimensional potential for a linear diatomic molecule 

developed by Devonshire based on a 2-dimensional cosine potential first 

proposed by Pauling explained all of our observations.  



 

 

For the potassium halides the barrier height is 0.003 eV; in RbCl it is 0.0075 eV, 

and in the sodium halides it is >0.015 eV. Stress experiments show that the ion 

has 6 equilibrium orientations along the 〈100〉 directions. Strong phonon 

scattering by tunneling states and rotational states is observed.  
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Chapter 1 

Chapter 1: Introduction 

1.1 Introduction: 

Infra-red absorption, thermal conductivity and specific heat measurements at low 

temperatures are the best tools for the problem of rotational motion of molecules 

in solids has been studied using CN− ions substituted for the halogen in KCl, KBr, 

KI, RbCl, NaCl and NaBr. Energy levels associated with the ion performing free 

rotation, hindered rotation, oscillation and tunneling motion were observed. A 

free molecule containing N atoms has 3N-6 degrees of vibrational freedom, three 

degrees of translational freedom and three degrees of rotational freedom. When 

a molecule is introduced substitutionally into a lattice, the vibrational degrees of 

freedom are usually changed relatively small by the matrix.  

The translational degrees of freedom of the molecule are the same as the 

translational degrees of freedom of an impurity atom, i.e., they manifest 

themselves as impurity modes. We have considered the third group of degrees of 

freedom, those connected with the rotational inertia of the molecule. The present 

study originated from the study of phonon defect interactions through 

measurements of the low- temperature lattice thermal conductivity initiated by 

Sproull and co-workers. Klein1 noticed that NaCl crystals grown in air had an 

extremely low thermal conductivity of a very peculiar temperature dependence. 

He was able to relate this phonon scattering to some molecular impurities which 

absorbed light of 186 mμ wavelength. This defect has since been identified by 

him as the OH− ions2.  

Klein expected that the strong phonon scattering was associated with the 

rotational degrees of freedom of the impurity ion. The study of these defects and 

their interactions with the phonons was complicated due to the fact that he could 
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not detect the OH− ions in NaCl by IR spectroscopy. In KCl, the infrared O-H 

stretching vibration was extremely weak3.  

The reason for this influence of the host lattice is still unknown. The small dipole 

moment observed in the IR absorption is in striking contrast to the result obtained 

in the dielectric measurements where a dipole moment ~D was found. Taking 

the Klein's suggestions into account we have studied CN− in a number of alkali 

halide host lattices. These molecules show infrared absorptions of the 

theoretically estimated strength. Thus, it appears that the trapping of the molecule 

ion in the lattice vacancy does not affect its vibrational properties to a great extent. 

We wish to show how a combined use of photon and phonon spectroscopy and 

of specific heat measurements can yield a detailed picture of the rotational 

degrees of freedom of molecular ions in solids and of their phonon scattering 

cross- sections. This chapter deals with CN− ions which is particularly a simple 

case one. On the other hand, the more complicated NO−
2 ion gives a deeper insight 

into the variety of rotational and translational degrees of freedom which are 

possible for a molecule in a solid in the most general case.4-10  

1.1.1 Experimental Techniques:    

Almost all infra-red measurements between 2.5  and 15 were made with a 

Beckman IR-7 prism-grating spectrometer with NaCl optics. It is primarily 

designed for double beam operation at ambient temperatures. In order to make 

measurements at low temperatures with small samples the spectrometer was 

modified, so that the beam having passed through the monochromator, was 

focused on to the sample.  

The cross- section of the beam striking the sample, the cross- section varies 

slightly with wavelength since the slit width is varied with wavelength, was 

1cm0.01 cm. at 2100 cm−1 instead of 2.5cm 0.6cm. when placed in the usual 
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compartment of the IR-7. The use of monochromatic light also reduces the 

radiation heating of the sample and avoids a possible radiation induced change in 

population of the energy states of the molecule. The resolution obtained at low 

temperatures was 0.3 cm−1 between 1000 cm−1 and 1300 cm−1, and 0.6 cm−1 at 

2100 cm-1 Measurements between 2.0 (5000 cm−1) and 2.45(4000 cm-1) were 

made with a Cary Model−14 spectrometer. Its resolution was approximately 

510−3 (1 cm−1).  

Measurements above 4.20K were made with conduction cryostats of conventional 

design. The use of LiF cold windows mounted on the liquid N2 radiation shield 

decreased the lowest temperature obtained from 13 to 70K. Higher temperature 

measurements were made during the warm up.  Temperature measurements were 

made with 1000− and 1500 −  ,
10

1
W− calibrated Allen Bradley carbon resistors. 

These resistors were calibrated against a gas thermometer in the Cornell thermal 

conductivity equipment. Measurements below 4.20K were made with an 

immersion cryostat.  

The difficulty is to make a seal between an infra-red transmitting window and the 

helium chamber which does not crack upon cooling and is tight to super fluid 

helium. A similar technique for an exchange gas cryostat has been described by 

Roberts. 11 

Fig. 1.1 shows an expanded view of the window arrangement A 1-in diam circular 

CaF2 window was epoxies to a well annealed 3-mil copper diaphragm with Hysol 

4314 epoxy resin. The diaphram was soldered with Wood's metal to the copper 

liquid-helium can. The most successful pair of windows has been cycled to  

helium temperatures more than 100 times and is still in use. The least successful 

pair was cycled only twice. For measurements out to 13.5 , Irtran-2 windows 

were used. KCl and KBr windows were also tried but were unsuccessful. With 
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and without 'Cold’ LiF windows on the nitrogen radiation shield, the lowest 

temperatures attained in the cryostat were 1.36 and 1.550K, respectively. The 

temperature of the bath was measured with a 56 calibrated Allen- Bradley 

resistor. The temperature difference between the crystal and the bath is estimated 

to less than 0.010K. With the LiF 'Cold' windows the bubbling of the normal 

helium was sufficiently small to enable steady-state measurements to be made at 

4.20K. For measurements between the  point and 4.20K, the bath was first 

pumped to a temperature below the desired temperature. A pressure gradient was 

then set up along the length of the helium path by closing the valves to the helium 

pumping system. Once the desired temperature was reached, the temperature was 

maintained for long periods of time with very little bubbling of the He bath by 

pumping through a 
8

1
in needle valve.  

 

Fig. 1.1. Schematic of the window arrangement used in the immersion 

cryostat. 
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The immersion cryostat was also used for studying changes in the CN− absorption 

spectrum under the influence of a static electric field or uniaxial stress. For 

electric fields parallel to the direction of the incident light nickel meshes (50 

lines/in) were used as electrodes. An electric field perpendicular to the direction 

of the incident light was applied by means of metal electrodes.  

For the uniaxial -stress measurements the crystals were mounted on a slotted 

cylinder to allow passage of the IR beam. The stress was applied perpendicular 

to the direction of the incident beam with a hydraulic pump. In order to obtain 

uniform strain, J oil was applied to the crystal surfaces. Several stress runs were 

made, and the data presented represent an average of all the runs.  

1.2 Measurement of The Thermal Conductivity:  

The thermal conductivity was measured using the standard steady- state method 

in a He4 cryostat12,13 and in a He3 cryostat that was built for measurements 

between 0.30 and 2.00K. Fig. 1.2 is a cross- section of the experimental chamber 

of the He3 cryostat showing the position of the sample. Thermal contact to the 

crystal was made with indium-faced phosphor bronze clamps. The thermal 

gradient along the crystal was measured with speer ,
2

1
W− 470, grade 1002 

carbon resistors which were calibrated in each run. After 10-15 runs the speer 

resistors would become noisy below 0.50K and had to be replaced by a fresh pair.  

The primary temperature standard was a Honeywell germanium resistance 

thermometer, which had been initially calibrated using He3 He4 vapour pressure 

thermometers and a paramagnetic salt thermometer.  

All resistance measurements were made with an A.C. Wheatstone bridge having 

a maximum sensitivity for a 5000− resistor of 1 part in 104 while only 

dissipating 10-10W in the resistor.  
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Fig. 1.2 Cross-sectional view of the experimental chamber of the He3 

cryostat. 

1.2.1 Specific Heat:  

The specific heat sample of mass 4 to 31g was cemented to a 0.30.41.0cm 

support of either graphite or KCl heavily doped with KCN which was clamped to 

the crystal holder of the He3 cryostat.  

The thermometer, a  ,
10

1
W  10 − Allen-Bradley resistor and a 1000−  Nichrome 

wire (0.025mm) heater were secured to the crystal with varnish. A support with 

very low thermal conduction was necessary so that heat put into the crystal would 

leak out sufficiently slowly to allow the change in temperature and hence the 

specific heat to be measured.  
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The time constant for the sample to approach the bath temperature was always at 

least 20 times longer than the duration of the heat pulse and the response time of 

the thermometry. The validity of the technique was tested on pure KCl whose 

specific heat was found to be proportional to T3 with a Debye  of 229  20K 

compared to 233  30K as given by Kelsom and Pearlman.14 

1.2.2 Crystals: 

The crystals were pulled from the melt in the crystal growing facility of the 

Material Science Centre at Cornell from halogen treated analytic reagent- grade 

material to which the proper amount of dopant had been added, using alumina, 

platinum or pyrolytic graphite crucibles and purified argon as protective 

atmosphere. The crystals were about 10 cm long and 1.5cm in diameter and clear 

except for the highest doping (0.5 mole % in the melt) which shows signs of 

precipitation at the bottom. These portions were discarded. For the spectroscopic 

determination of the CN− concentrations, we refer to table 1.1. 

In the infra-red the only impurity within the limit of detectability was NCO−. In 

the ultraviolet rudimentary "OH" bands were found. In the 0.5 mole % CN− doped 

crystals the absorption co-efficient of this band was of the order of 1 cm−1 in all 

the alkali halides.  

Table-1 

Host lattices CN
−(cm−1) CN− (cm−2) 

KCl 2105 3.61019 

KBr 2097 3.11019 

KI 2067 6.71019 

NaCl 2104 1.81019 

NaBr 2086 1.551019 

RbCl 2075 5.21019 
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Spectroscopic determination of CN− concentration. The concentration 

NCN
−(cm−2) is related to the peak absorption coefficient CN− are given in the table 

together with the frequency CN− of the CN− stretching fundamental for the 

different alkali halides at room temperatures.  

The constant  was determined for each host lattice from a chemical analysis 

performed at the Analytical Facility of the Cornell Materials Science Center. The 

chemical determinations are believed to be good to 10% for the alkali halides 

expecting KI and RbCl, which are good to 30%. 

 

Fig. 1.3 Transmission spectra of 5mm thick KCl crystal Containing 

8.81018cm−3 CN− ions. 
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Fig. 1.4 Absorption spectra of the CN− overtone vibration in KCl. 

In the pure samples, this absorptions was of the order of 0.1 cm−1 or less. The 

origin of the ultra violet absorption band in cynide-doped alkali halides has been 

ascribed to NCO− by Akpinar15 and to OH− by Rolfe et.al.16.  

The thermal conductivity measurements indicate that the ultra violet absorption 

in our doped crystals probably not due to OH−. Our thermal conductivity results 

for NaCl + NaCN show no low temperature scattering whatsoever. Klein found a 

strong phonon scattering for NaCl doped with NaOH.  
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The absorption coeffcient was~1 cm−1 at 190m for thermal conductivity crystal. 

From ionic conductivity measurements on KCl containing 41019 cm−3 CN− 

between 200 and 4000 C it was  concluded that the vacancy concentration was the 

same as in our undoped crystals i.e., at most ppm. This is as expected for the 

singly charged CN− ion sitting in a substitutional site. On the other hand, doping 

with negative ions like OH−, CO−
3 SO−

4 has been found significantly affect the 

ionic conductivity due to association either with positive divalent ions or 

vacancies17-19. In summary it may be said that in our crystals the primary impurity 

other than CN− is the NCO−. Infrared and ionic conductivity measurements 

indicate that the absorption in the cynide stretching region is due to the singly 

charged CN− ion in a substitutional site. The size of the samples used for the low-

temperature infrared measurements varied from 0.5 to 12mm in thickness and 

usually had a cross-section of 1cm2. The stress samples were usually 

3.53.512mm with the long axis being the direction of uniaxial stress. The 

electric field samples were between 0.5 to 1mm thickness and 1cm2 in cross-

section. The field was applied along the small dimension. The thermal 

conductivity samples were 5540mm in size except samples for electric field 

measurements which were 6240mm. Electric fields were applied with 

evaporated gold electrodes 500-100-A0 thick. The surfaces of the Cleaved crystals 

were sand- blasted in order to ensure diffuse phonon scattering by the boundaries.  

1.2.3 Absorption Spectra:  

In Fig. (1.3) and (1.4) we compare the spectrum of the fundamental and the 

overtone vibration of CN− in KCl. Their features are almost identical. At 20K the 

spectrum consists of a central line at 2089  1 cm−1 (4151cm−1 for the overtone) 

with a weak sum satellite 12  1 cm−1 away. At about 80K a weak difference 

satellite arises. It is less well resolved, and its  
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Fig. 1.5: Transmission spectra of 16mm. thick KBr crystal containing 

4.61019 cm−3 CN− ions. 

separation is 8   2 cm−1 (9  2 cm−1 for the overtone). At T=250K the central 

peak's intensity decreases while the sum and difference satellites increase in 

intensity and the satellites shift in position toward the central peak. As the 

temperature increases to 400K, the central peak further diminishes in intensity, 

but two broad bands arise whose separation increases with increasing 

temperature. The separation of the broad bands is 23  1.5cm−1 at 800K and 

402.5cm−1 at 2950K for both spectra. At all temperatures the width of the 

observed absorptions is not limited by the instrumental resolution.   

Figs. (1.5) and (1.6) show the spectrum of CN− in KBr for the fundamental and 

overtone vibrations. A weak sharp line at 2074 cm−1 which is probably due to 

NCO− has been subtracted from the spectrum in fig (1.5) definitely not due to 

CN− since it was not observed in the overtone spectrum. Obviously here again the 

separation of the sum satellite from the central line is about 12cm−1. The only 

differences betwee the KBr and KCl spectrum are that at high temperatures the 

central minimum is not so deep and that the separation between the broad bands 

at higher temperatures is slightly smaller, 20  1.5 cm−1 at 800K and 35  5cm−1 

at 2950K. 
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Fig. 1.6: Absorption spectra of KBr+4.61019 cm-1 KCN overtone vibration 

of CN- 

 

Fig. 1.7: Transmission spectra of 3mm KI crystal containing CN− ions at 

1.360K. 
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The striking identity of the structure observed with fundamental and overtone 

vibrations proves that this structure is not merely the result of having the 

vibrational energy of some of the CN− ions different from the majority because 

of different surroundings like clusters, interstitials etc., If this were the case, the 

structure of the overtone absorption would have twice the width of the 

fundamental. Rather the structure is caused by a simultaneous excitation of the 

stretching vibration, with = 1 for the fundamental and =2 for the overtone, 

plus or minus some other transitions, interpreted as librational or rotational ones.7 

Fig. (1.7) shows the CN− spectrum in KI at 1.360K.  Fig (1.8) shows the spectrum 

for higher temperatures. At T = 1.360K one again observes a central line with a 

weaker sum satellite about 11 cm−1 away and a barely resolvable difference 

satellite approximation 2.5 cm-1 away at 2064.5cm−1. In addition, broad bands are 

observed with maxima at approximately 2110, 2135, and 2150cm−1, i.e. 43cm−1, 

68cm−1 and 83cm−1 from the main CN− line at 2067cm−1. At higher temperatures 

the spectrum is very similar to that observed in KCl and  

 

Fig. 1.8: Absorption spectra of KI+4.81019cm−3 KCN. Fundamental 

vibration of CN−. 
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Fig. 1.9: Transmission spectra of 3.5mm RbCl. crystal containing 21019cm−3 

CN−ions. 

KBr except that now the central minimum is no longer detectable. The half - 

width of the observed broad band is 22  1 cm−1 at 800K and 40  2 cm−1 at 2950K.  

The CN− spectrum in RbCl is qualitatively similar to that in potassium salts, but 

the splitting of the sum satellite is now larger, 19cm−1, and the central line 

disappears only at about 1500K  shown in fig. (1.9).  

In NaCl and NaBr the spectrum consists of only one narrow band whose half- 

width is proportional to the square of the temperature as shown in figs. (1.10) and 

(1.11).  
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The instrumental resolution did not allow the determination of the line shape 

below, 800K. A weak low- energy satellite 4cm−1 away from the main line was 

observed in NaCl and NaBr at low temperatures. 

With the overtone vibration a low- energy satellite 8 cm−1 away was observed. 

This suggests that these lines are to be associated with a different center, possibly 

CN− in a different position in the lattice. 

1.2.4 Electric-Field and Stress Effects:  

The effect of a static electric field on the CN− infrared absorption in KCl:CN and 

NaCl: CN was studied at 20K. The field was applied in [100] and [110] direction 

and was oriented both in the direction and perpendicular to the direction of the 

incident polarized light beam.  

For a maximum field of 80KV/cm, the observed change in optical density was 

less than 5%. Under the assumption that the CN− dumbbell carriers a permanent 

moment  like a classical dipole, we conclude that the molecule is either frozen-

in at 20K or that  is small.  

A distinction between these two possible explanations was achieved through 

uniarial stress experiments.  

The observed change in optical density of the infrared band gives a direct measure 

of the number of molecules oriented parallel to the stress, axis, denoted by NII 

and the number oriented perpendicular to the stress, denoted by Nper.  

Stress alignment was found in KCl, KBr, KI and RbCl.  

Fig. (1.12) shows the directional dependence of the alignment at 1.360K as a 

function of stress for KCl 
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Fig. 1.10: Absorption spectra of CN− fundamental vibration. Solid lines 

NaCl+21019cm−3 NaCN, dashed lines NaBr 1.61019cm−3 NaCN. 

 

 

 

 

 

 

 

 

Fig.1.11: Half-width of CN− fundamental vibration as a function of 

temperature. Upper line: NaBr+1.6 1019. cm−3 NaCN, lower line: 

NaCl+21019cm−3 NaCN. 
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Fig. 1.12: Alignment of the CN− ions as a function of uniaxial stress. 

Fig. (1.13) shows the temperature dependence of the alignment between 1.36 and 

4.20K. It can be seen that for moderate stresses the alignment follows a 1/T law. 

The alignment observed in other host lattices is smaller. Fig. (1.14) shows the 

results for [100] stresses in KCl, KBr, KI and NaCl. It can be seen from the figure 

that no alignment is observed in NaCl and NaBr. This was studied between 1.36 

and 4.20K and for the [100] and [110] stress directions. After applying the 

uniaxial stress it is observed 10 to 5 min and failed to detect any alignment in 

these two host lattices and the same results were obtained for NCO− in KCl, KBr 

and KI. In all the other host lattices the alignment followed the stress within the 

time constant of the instrument. 
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Fig. 1.13: Temperature dependence of the CN− alignment in KCl for [100] 

uniaxial stress. Upper curve  =5.2kg/mm2, Lower curve  = 2kg/mm2. 

1.3 Theory: 

Molecules in crystalline environments are expected to have discrete equilibrium 

orientations. Most of the features observed with CN− in alkali halides can be 

explained with a simple two-well cosine potential. There- after we shall discuss 

how a quantitative description can be obtained by using a more realistic three 

dimensional potential of octahedral symmetry.  

  Following Pauling we choose a potential of the form.  

( )21
2

0 Cos
V

V −=  ....................................... (1.1) 

The Schrodinger equation for this potential is known as Mathieu's equation and 

can be solved exactly.  
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When KT<<V0, the molecules occupy energy states below the top of the barrier. 

In the harmonic approximation these energy levels correspond to those of a 

harmonic oscillator.  

Figure 

 

Fig. 1.14: Alignment of CN− in different host lattices with [100] uniaxial 

stresses at T = 1.360K. 
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Where lib

0
~ is the fundamental librational frequency in cm−1 and CIhB 28/

~
=  is the 

rotational constant in cm−1. All the quantities marked with ~ are in cm−1. 1 cm−1 

correspondence to E = 1.2410−4 ev and f = 3 1010 Sec−1 = 1.420K. Each energy 

level of the harmonic librator is two fold degenerate for lib

0
~ << 0

~
V . In reality these 

levels are split due to the possibility of quantum-mechanical tunneling through 

the barrier. 

The selection rules for the degenerate librator have been worked out by Hexter 

and Dows.21 They showed that in the near-infrared vibrational spectrum the 

strongest transitions involve no changes in the librational quantum number, i.e., 

they give rise to the transition  n = 0 which is called the Q branch. Because of 

anharmonicity, weaker transitions  n =  1,  2, ............etc. are allowed. These 

give rise to a succession of equally spaced lines which decrease in intensity by 

the factor.  

                                             ( ) .
~

2/~
0

nlib B


   

In addition, the different transitions are weaker than the sum transitions by 

Boltzmann factor.  
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The eigenstates with energies large compared to Vo corresponed closely to those 

known for free molecules. We use the term "free rotations' for the case in which 

most of the moleculas occupy energy states lying above the barriers. The free 

torator energy levels are given by  

( )1
~~ += JJBRot  

Where J is the rotational quantum number. Each level is (2J+1) fold degenerate. 

The selection rules for the vibrating rotator are  J =   1. The transitions with  

J =  + 1 and  J =  − 1 give rise to the R and P branches respectively, while the 

transitions with  J =  0 (the Q branch) are now forbidden. The Q branch is 

forbidden only in the case of diatomic molecules. This makes it particularly easy 

to detect the transition from librational to rotation for such molecules. For more 

complicated molecules the Q branches are generally allowed thereby making the 

interpretation more dfficult.  

The shape of the vibration- rotation band is determined largely by the thermal 

polution of the rotational levels. If one assume that the intensity of the transitions 

from a given rotational states J is governed solely by the number of molecules in 

the state J, then the separation of the maxima in the P and R branches is given 

by22 

 ( )2

1
max /

~
8~ hckTBPR =  2

1

T ..............................(1.5) 
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The results of the above simple theory may be briefly sumarised as follows: 

At low temperatures (kT<<V0) the infrared spectrum should consist of a strong 

Q branch with weak satellites separated from the fundamental by multiples of the 

libration frequency, lib

0
~ . At high temperatures (kT>>V0) the spectrum should 

approximate that known for free molecules, i.e., it should consist of P and R 

branches with a missing central Q branch. For Intermediate temperature (kTV0) 

the spectrum should consist of P, Q and R branches of comparable intensity.  

Let us supplement this quantum mechanical discussion of the states of vibrational 

motion with the semi-classical picture of a rotating molecule. One can describe 

the states below the barrier Vo as oscillatory motions of the molecule in a 

particular well.  

This does not simply mean however, that in these states the molecule cannot move 

from one well to the other. These states are therefore, frequently called states of 

hindered rotation or states of almost free rotation. Such a change of the orientation 

is of particular interest if the influence of an electric or a stress field is studied. 

We can then describe the orientation as a thermally activated rate process, 

involving a classical jumping of the molecule over the potential barrier with a 

jump rate jump. 

 jump = lib

0 exp 
















−− kThV lib /

2

1
00  ................... (1.6) 

It must be noted that this description fails if the reorientation takes place through 

a tunnel process which is purely quantum mechanical.  
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1.4 Comparison with Experiment: 

A qualitative comparison of the KCl and KBr data with the selection rules stated 

above indicates that at low temperatures, below 200K, the motion of the molecule 

can best be described as libration. Between 200 to 500K the molecule performs 

hindered rotational motions, i.e., in this temperature region a significant number 

of molecules occupy energy states both above and below the barrier. Above 600K 

most of the molecules occupy energy states lying above the barrier and now the 

characteristic P and R maxima of free molecules are observed. Fig. (1.15) shows 

that the separation of the P and R maxima follows a 2

1

T  law as predicted by 

equation (1.5). From these data the rotational constant B
~

=1.25cm−1 is obtained 

for the KCl host lattice.  

The error in determination B
~

 by this method is determined by the width of the P 

and R maxima and is estimated to be about 20%. From B
~

 the moment of inertia 

I and hence the inter-nuclear separation between the C and N atoms is calculated 

to r = 1.4Ao for KCl. For KBr one gets a smaller value of B
~

(1.0 cm−1). The P and 

R branches are not as clearly resolved in KBr as in KCl which is probably due to 

center-of mass motion of the molecule. The value of 1.25cm−1 found in KCl will 

be assumed to be true B
~

 value for all host lattices.  

Pauling23 has estimated the radii of the carbon and nitrogen atoms for the C-N 

bond length may be deduced. Recently Elliot and Hastings24 have used 1.16Ao 

for the C-N bond length in pure KCN in order to fit their neutron-diffraction data. 

Considering the simplicity of the model used here the agreement between 

calculated and experimental values is considered very satisfactory. 
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Fig. 1.15: Separation of the P and R maxima in cm−1 as a function of 

temperature. Upper line: KCl +8.81018 cm−3 KCN; lower line KBr+4.61019 

cm−3 KCN. 

It follows from above that the motion of the CN− in KCl and KBr is very nearly 

free at 600K and above. Therefore the barrier height must be less than 40cm−1. 

From Pauling's model the barrier height can also be determined directly from the 

librational frequency on the basis of equation (1.3). One obtains 1

0 24
~ − cmV . The 

zero point energy of the librator is 6cm−1 and hence the first librational state lies 

just below the barrier. The energy states above the barrier should approximate the 

free rotor levels closely. The rotational fine structure (Separation = 15.2
~

2 − cmB ) 

has not been observed.  

The above interpretation of the CN− fundamental spectra in KCl and KBr is 

completely confirmed by the data for the CN− overtone vibration in these host 
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lattices. The overtone vibration shows a 12cm−1 librational satellite at low 

temperatures and characteristic P and R maxima at high temperatures whose 

separation is the same, within the experimental error, as that observed for the 

fundamental. The identity of the spectra for the fundamental and overtone 

vibrations indicates (1) that the interaction between vibration and rotation is 

negligible for the CN− molecule and (2) that the barrier hindering rotation is 

independent of the vibrational state i.e., vibrational polarization effects are 

unimportant in determining the barrier hindering rotation. This conclusion is 

evident also from the fact that the Q-branch frequencies change from host lattice 

to host lattice without bearing any obvious relation to the potential barrier 

hindering rotation. The barrier appears to be insensitive to the halide ion but very 

strongly dependent on the nearest neighbour alkali ion. The reason for this are 

unknown but experimentally the stress effects show that the CN− dipole prefers 

to point towards the nearest neighbour alkali ion.  

In RbCl the librational satellite is 19cm−1 away so that 0

~
V for the two fold potential 

is about 60 cm−1, i.e., the barrier height is about 2
2

1
times that in KCl or KBr. This 

is confirmed by the temperature dependence of the spectra in RbCl which show 

P and R maxima only at very high temperature, less than 1500K, with a very weak 

active Q-branch.  

The spectra of CN− in KI is similar to that observed in KCl and KBr at low 

temperatures.  At high temperatures, however, the P and R branches are not 

resolved. Instead one obtains a broad absorption band of a width proportional to 
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2

1

T  as shown in fig. (1.16). These data closely resemble the data for the separation 

of the P and R maxima in KCl shown in fig. (1.15). One might have expected a 

clear resolution of the P and R maxima in KI because the I− cavity is large and 

hence the barrier to rotation should be low. Yet there appears to be some 

mechanism disturbing the free rotation at high temperatures and causing the Q-

branch to become allowed. The selection rules for the librating molecule prefer 

the Q-branch21. Similarly we suspect that for a molecule performing translational 

oscillations  the Q- branch may become allowed. Evidences for such a motion is 

given by the high- energy satellites observed at low temperature, spaced 40,68, 

and 83 cm−1 from the main band. They may be caused by either of the following 

two mechanism: 

 

 

 

 

 

 

 

Fig. 1.16: Half- width of CN− fundamental absorption in KI as a function of 

temperature. 

The 40-cm−1 satellite may be associated with a resonant mode and the other two, 

narrower bands may be caused by excitations of local modes in the gap.  
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Since the CN− ion possesses symmetry C two transitional local mode of 

symmetry A1 and E1 should be allowed, the A1 mode corresponding  to transitions 

along the inter-nuclear axis and the doubly degenerate E1 mode corresponding to  

transitions along axes perpendicular to the inter-nuclear axis. In recent far-

infrared absorption measurements Lytle and Sievers25 observed a strong 

absorption in KI: CN at 81.5cm−1 which they explained as a local mode in the 

gap, and broad absorptions between 35 and 70cm−1,  interpreted as resonant 

modes in the acoustic continuum.  

The spectrum was similar to that obtained in KI: Cl26. The absence of a second 

gap mode might be explained through rapid reorientational motion, even though 

the primary motion of the molecule at low temperatures is librational they can 

still reorient very rapidly, of the CN− ion about its two axes of inertia which 

causes it to behave like an ion of spherical symmetry. This model leaves the 68 

cm−1 mode  observed in this work unexplained.  

The center of mass of the ion may not coincide with the centre of the large highly 

polarizable I− cavity, as recently suggested by Pohl 27,28.  The close spacing of the 

difference satellite indicates that the potential to which the molecule is subjected 

in KI is different from that in KCl. The translational or librational motion around 

this off-center position may be responsible for some of the high-energy satellites. 

The only conclusion that can be drawn at this stage is that the existence of some 

oscillatory motion seems quite possible in the KI lattice and this may explain the 

persistence of the Q-branch at high temperatures. The beginning of this may 

already be observed in KBr and RbCl. 



Introduction 

28 

 

The CN− spectrum in NaCl and NaBr is quite different from that observed for the 

other host lattices. The absence of P and R branches, the extreme narrowness of 

the vibrational transition even at temperatures as high as 800K, and the fact that 

the half- width of the band does not follow a 2

1

T  law indicates that the barrier to 

rotation in NaCl and NaBr is extremely high and almost certainly greater than 

100cm−1.   

Unfortunately, an accurate estimate of the barrier height cannot be given because 

a librational satellite for the CN− has not been observed in these two host lattices. 

From experimental sensitivity we estimate that any librational transition must be 

at least 50 to 100 times weaker than the fundamental at low temperatures. This 

indicates that the CN− sits in  a very harmonic potential well so that the Q-branch 

always dominates the absorption. The origin of the T2 dependence of the half 

width is unknown but it is interesting to note that it is similar to that observed in 

the near infrared spectrum of U centers.  

Under uniaxial stress the potential wells in the direction of the stress become 

deeper and the wells perpendicular to the stress become shallower. A 

repopulation of the molecules into the deeper wells may occur by the two 

processes mentioned above. Since the uniaxial stress experiments in this study 

we carried out below 40K it is sufficient to raise or lower the wells by only a few 

degrees Kelvin to observe an alignment.  

The maximum dichroism was observed for [100] stress, a smaller dichroism for 

[110] stress with the light propagating parallel to [110]. 
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Hence, we conclude that the equilibrium orientations for the dipoles are the 

<100> directions. The T−1 dependence shows the dichroism indeed arises through 

a molecular reorientation under the influence of the external stress. For small 

stresses the alignment should vary linearly with the applied stress. Departures 

from this law are observed for stresses smaller than 1 to 1.5kg/mm2. From this 

one deduces a zero- stress splitting of ~ 0.6cm−1. It may be attributed to a residual 

internal stress or to the fact that the ground state of the CN− is split by tunneling, 

1.4 and 2.4cm−1 as predicted  by Devonshire. In his work on the R-center Silsbee29 

found similar deviations from a Langevin curve from which he deduced a zero-

stress splitting of ~1.0kgmm−2. Sussmann30 used 3kg/mm2 to explain the 

deviations observed by Kazing31 for the −

20 center in KCl. 

With <100> equilibrium orientations no optical dichroism should be observed for 

[111] stress. Hence the non vanishing dichroism is surprising. It cannot be caused 

entirely by inaccuracy in such a procedure, which is at most 50. It is conceivable 

that the residual internal stresses may tilt the direction of the applied stress for 

some of the centers so that the stress and the polarized light are no longer 

perpendicular to each other. There may also be a small probability for the 

molecules to orient along the <111> directions. In that case we would expect for 

higher potential barriers, smaller tunnel splitting, the dichroism for [111] stress 

to be smaller or even to disappear. Finally, and most importantly, the stress 

dependence of the energy levels is unknown. For these reasons we have not 

attempted to make a quantitative fit to the data and merely conclude that the 

alignment is of the Langevin type and the equilibrium orientations of the dipoles 
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are the <100> directions. For [111] stress the light was propagated both in [111] 

and [110] directions. Within experimental error the magnitude of the effect was 

the same. An nonvanishing dichroism was also found for [110] stress and light 

propagating in [010], with an alignment of 0.35 for a stress of ~ 5kg mm−2. 

The alignment observed in KBr, KI and RbCl host lattices is similar to that 

observed in KCl but smaller in magnitude. In all these host lattices the alignment 

proceeds with a time constant which is much faster than the time constant of our 

detection system (~2 sec.). Since in the potassium series the barrier height for the 

CN− is low, both the classical thermal activation process discussed above and the 

tunneling process have a relaxation time which is shorter than our experimental 

time constant and it is not possible to decide which process is responsible for the 

observed alignment. In RbCl the classical process, owing to the high barrier, has 

a negligible probability at 1.360K. This implies that the alignment observed in 

this host lattice is through a tunneling process. From similar arguments the 

complete lack of alignment observed in NaCl and NaBr  between 1.36 and 4.20K 

over time periods as long as 10−3 sec. implies that the tunneling frequency must 

be smaller than 10−3 sec−1 and the barrier to rotation must be greater than 100 

cm−1, assuming a librational frequency of 1012 sec−1.  

Recently Sack and Moriarty28 measured the dielectric constant of KCl : CN, KBr: 

CN, KI: CN and NaCl: CN down to about 2.50K and in the frequency range 1-

100 Kc/sec. They found in the potassium series that the dipoles followed the field 

oscillations but in NaCl they observed no increase in the dielectric constant. Their 

results are in excellent agreement with the conclusion drawn from our optical 
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data. They found a dipole moment of ~ 0.3 Debye for the CN− in the potassium 

salts. The small dipole moment accounts for the fact that electric fields of 

80KV/cm cause a change of less than 5% in the CN− infrared band at 20K. So far 

as the equilibrium orientations of the CN− is concerned, Pauling's calculation is 

repeated with a more realistic potential function in three dimensions and with six 

potential minima along the <100> directions This will also provide us with 

quantitative values of the tunnel splitting.  

The tunneling probability can be calculated by starting with the librational wave 

function and then treating the effect of the anharmonic terms in the potential 

function as a perturbation. For low potential barrier, as in the case for CN− in 

many alkali halides, a second method may be used. This consists of starting with 

the free rotor states and then calculating the effect of a crystalline electric field 

on the (2J+1) fold degenerate jth rotational state. This method has been discussed 

by Devonshire32 who calculated the energy levels for a linear molecule in an 

octahedral site. This is the lowest order surface harmonic of octahedral symmetry. 

Such a potential is obtained by considering the electrostatic field due to an 

octahedron of charges and is often used to study the spitting of the energy levels 

of paramagnetic atoms in an octahedral field.  

The potential function used by Devonshire is 

( ) ( )( ) 4442 5353038/
~

,
~

CosSinCosCoskV ++−−= ...........(1.7) 

Where k
~

 is a constant. For k
~

positive V
~

has six minima equal to k
~

− at the points.  
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  = 0 or ;  = /2,  = 0,  /2 or  

which correspond to the six <100> directions in the crystal. The potential maxima 

lie along.  

( ) 4/,3/11  == −Cos  or  3/4. 

which are the eight <111> directions in the crystal. Two wells lying in adjacent 

<100> directions are separated by a potential barrier of 1.25 K
~

 in the <100> 

directions.  

Devonshire32 has given the energy eigenvalues of the Schrodinger equation for 

the potential V
~

(,). For K
~

=0 the solutions reduce to the free- rotor energy levels. 

For K
~
0, the degeneracy of the rotational energy levels is partly removed. The 

energy levels for J = 0, 1, 2, 3 have been plotted in units of the rotational constant 

B
~

 as a function of BK
~

/
~

 and are shown in the fig (1.17). For high positive value 

of barrier parameter, K
~

, the A1g (J=0) T1u (J=1) and Eg (J=2) states have very 

nearly the same energy. In the high-barrier limit they present a six fold degenerate 

libration ground state as should be the case for the six minima potential 

considered. The T2g (J=2) will represent the first excited lib. state. 

Using the well known electric dipole selection rules23 the value of the barrier 

parameter K
~

 can be determined from the observed splitting of the libration sum 

satellite T1u (J=1)→T2g(J=2). Note that all transitions occur simultaneously with 

a change = +1 in vibrational quantum number of the C-N stretching vibration. 
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Fig. 1.17: The energy levels in units of B
~

 as a function of the barrier 

parameter BK
~

/
~

 for a linear molecule in an octahedral site.  

For a splitting of 12cm−1 it follows that BK
~

16
~
= =20cm−1.  From this a barrier 

height in <110> is determined to KV
~

25.1
~

0 = =25cm−1.  It is gratifying to find that 

the sophisticated Devonshire model yields a barrier height in very close 

agreement with the one determined from the simple two well Pauling potential, 

for which 0

~
V =24cm−1 was found. In fig. (1.17) the level scheme for CN− in the 

potassium halide is shown with the appropriate energies. Sum transitions from 

( ) ( )30 1

*

19 =→= JTJA u
 and T2u(J=3) with J=3 should be less likely. Transitions 

from Eg(J=2) to T1u and T2u (J=3) should be possible if Eg is thermally populated. 

These transitions may be partly responsible for the observed breadth of the sum 

satellite. However, note that T1u(J=3) and T2u(J=3) lie so close to the barrier in 
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contrast to T2g(J=2) that they are more appropriately called rotor states and hence 

would have a smaller probability of mixing with the librational Eg(J=2) states33. 

The optical transitions giving rise to the strong central line in the absorption 

spectrum at low temperature are A1g(J=0)→ T1u(J=1) and the inverse, T1u(J=1) → 

A1g(J=0). Note that these transitions are not, strictly speaking, Q-transitions. The 

Q transitions are partly forbidden.  

The two transitions T1u(J=1)  A1g(J=0) different by 2.8cm−1 could not be 

resolved except in KI (at 2064.5cm−1) shown in fig. (1.7) despite accurate 

instrumental resolution (0.6cm−1).  

The width of the observed hand is, however, 2.5cm−1. The difference satellite 

arises above 100K because of thermal population of the T2g (J=2) and of the 

T1u(J=3) and possibly the T2u(J=3) states. The selection rules predict a difference 

transition T2g(J=2)→T1u(J=1) at 12cm−1, plus transitions T1u(J=3) → T2g(J=2) at 

2.9cm−1 and T2u(J=3) → T2g(J=2) at 5.1cm−1. What we observe is one broad band 

separated by less than the separation of the sum satellite.  

Similarly, the librational frequency of 19cm−1 in RbCl yields K
~

=28 B
~

=35cm−1. 

The T1u and Eg levels are expected to lie 0.625 and 0.75cm−1, respectively above 

the A1g state. This would predict a difference satellite 1.2cm−1 away which was 

again not resolved. However, the experimentally observed width of the central 

line in RbCl is about 1cm−1, i.e. much smaller than that observed in KCl and is 

qualitatively consistent with our supposition that the width arises from unresolved 

tunneling transitions.  
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1.5 Objective of The Book: 

The IR measurements or CN− in KCl, KBr, KI and RbCl have shown that at high 

temperatures the molecules can rotate freely in the lattice. At low temperatures 

the molecules perform librational motions with a frequency of 11 to 12 cm-1 in 

RbCl. In addition uniaxial stress measurements show that in these host lattices 

the CN− can reorient down to the lowest temperature of our measurements 

(1.360K), the minima in the potential function being the <100> directions.  

In NaCl and NaBr the CN− is "locked-in" at low temperatures and the barrier 

hindering rotation is estimated to be greater than 100 cm−1.  

Finally, the energy levels of the CN− in a six-well potential have been 

quantitatively considered for the potassium halides and RbCl in terms of the 

Devonshire model. This model can explain the gross features of the IR data but 

predicts tunneling transitions which were not observed in our optical 

measurements. 
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Chapter 2 

Chapter 2: Thermal Conductivity and CN− doped Specific Heat of 

Alkali Halide Crystals using Phonon Spectroscopy Technique. 

2.1 Introduction: 

Devonshire32 model explains the gross features of the IR data but predicts 

tunneling transitions which were not observed in optical measurements. If this 

model is applicable and correct for the CN−  then the tunneling transitions in the 

IR data should be resolved and one can account for the fact that the rotational fine 

structure of the P and R branches at high temperatures resolved. These 

discrepancies can be satisfactorily explained by thermal conductivity of KCl, KBr 

and NaCl containing CN− and the specific heat measurement of KCl: CN.  

To answer the questions posed in the preceding chapter we have measured the 

thermal conductivity to study the phonon interactions in CN− doped crystals. In 

contrast to optical spectroscopy, phonon spectroscopy via thermal conductivity is 

a broad band technique. Instead of a phonon monochromator one passes 

essentially a black body distribution of phonons down the crystal by means of a 

thermal gradient. The thermal conductivity is the transmission of this spectrum 

by the crystal integrated over all phonon frequencies. To unfold the phonon-

scattering rates a method of curve- fitting is used that has been previously 

described and tested 34,35. Limitations of the simple theory in the presence of 

strong normal processes have been recently discussed by Berman and Brock36 

and Thacher.  

2.2 Data and Curve Fitting for KCl : CN: 

The thermal conductivity of the system KCl: CN is shown in fig. (2.1). The 

striking features of the doped crystals are the great reduction in conductivity and 
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the distinct depressions in the curves at 0.60 and 70K. From this it follows that 

certain phonon frequencies interact very strongly with the CN−. It is these 

resonance frequencies that we wish to correlate with infrared spectroscopic data. 

For a quantitative analysis of the scattering we use the Debye model for the 

thermal conductivity. Then the thermal conductivity K(T) is given by the 

following equation.  

 

Fig. 2.1: Thermal conductivity of KCl: CN. CN− concentrations are: (A) 

undoped, (B) 9 1017cm−3 (C) 8.41018cm−3 (D) 4.91019cm−3. NCO− 

concentrations are 1.31018 cm−3 Solid lines are machine fits. 
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where  is the sound velocity, WD is the Debye cutoff frequency and  (T,W) is 

the combined relaxation time given by 

( ) ( )WTWT
j

J ,, 11  −− =         .......... (2.2) 

In this equation ( )WTJ ,1−  is the relaxation rate of the jth scattering mechanism. 

The combined relaxation rate giving the best fit to the pure KCl data is:  

4344151 sec1007.6sec109.4 WP

−−− +=  

+3.6410−18 sec deg−1 Tw2 e-40  K/T............... (2.3) 

The individual scattering terms are boundary isotope, and umklapp, respectively 

and their origin is discussed in reference37.  The average sound velocity used here 

is calculated from the Debye temperature , using the equation: 

( ) 6
3

1
21 105.26 == − nv h   cm/sec.............. (2.4) 

where n is  the number of atoms per unit volume. The accuracy of the pure- crystal 

fit is more than adequate since in fitting the doped crystals one has to add a 

relaxation rate that completely dominates the pure- crystal rate except at high 

temperatures. The doped crystals were fit with the following relaxation rate that 

had previously been used to fit KCl: NO−
2 data: 
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The scattering rate for  each depression had to have a resonance from falling off 

rapidly on both sides of the resonance frequency. The expression used satisfies 

these requirements and in addition has a very plausible from analogous to the 

scattering rate of phonons by atomic states. A similar case has been treated by 
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Griffin and Carruthers38. They calculated the scattering rate by donor electrons in 

germinium and obtained an expression similar to that used here except for the 

frequency dependence of the numerator which comes from a detailed knowledge 

of the electron-phonon interaction. Calculations of the scattering of phonon by 

molecules have been made by Wagner using both perturbation theory39 and 

Green's function techniques40. His scattering rate were of a resonance type note 

greatly different from that used here. However, sufficient details of the phonon 

molecule interaction were not included and so comparison with experiment was 

not possible. It was recently suggested by Sussmann41 that tunneling included by 

single phonon could be responsible for the phonon scattering by molecules. His 

calculation was based on scattering between states split by the residual internal 

strain and he found a phonon- relaxation rate proportional to the phonon 

frequency in contrast to our results. 

At present it appears that there is no firm theoretical basis for the use of equation 

(2.5). We therefore, merely state that it fits that data well and proceed to use it in 

determining the resonance frequencies.  

The constants D1 = 1.1610-10 cm3 sec−1, D2 = 7.510-10 cm3 sec−1, 1= 0, 2=0, 

W1=31011sec−1 ( )1

1 6.1~ −= cm   and W2=3.541012 sec−1 ( )1

2 18~ −= cm  were chosen 

to give the best fit to the data for the sample B. N was the optically determined 

CN− concentration in this crystal. The damping terms 1 and 2 could be as large 

as 0.4W1 and 0.4W2 respectively without making the fit to the data. This is 

because the damping affects negligibly. For the samples (C) and (D) the effective 

values of N were determined to give good agreement between the machine fit and 

the data in the temperature range 50 to 200K. The scaling of the strength of the 

phonon scattering with CN− concentration is demonstrated by the effective values 

of N for curve (C) and (D) 11.61018cm−3 and 3.710-9cm-3 respectively, which 

agree within the experimental error with the optically determined CN− 
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concentration, 8.41018cm−3 and 4.91019 cm−3 respectively. The phonon 

scattering does not scale with NCO− concentration which varies by only a factor 

of 3 between samples (B) and (D). From this together with the fact that the 

infrared spectra of NCO− consist of very narrow lines we conclude that NCO− 

does not scatter phonons.  

2.3 Origin Of The Resonance Frequencies In KCl : CN:  

A very plausible origin for the phonon resonance frequencies W1 and W2 can be 

seen from the energy- level diagram of CN− in KCl, Fig. (2.2) 

The resonance energy  w1 (1.6cm−1) is very nearly equal to the tunneling 

splitting. This suggests that the low-temperature depression in the thermal- 

conductivity curves is caused by a resonance phonon absorption in which the CN− 

is excited from the ground state, A1g, to one or both of the next two levels, namely 

T1u(1.4cm−1) or Eg (2.4cm−1), subsequent de-excitation of the molecule would 

result in the emission of a phonon of the same energy but in a random direction. 

Thus the over-all process would add to the thermal resistance. Such a strong 

phonon interaction would cause appreciable broadening of levels T1u and Eg and  

could explain why the tunneling splitting was not resolved in the infrared spectra. 

It is not possible to say that A1g→T1u is favoured over A1g→Eg or vice versa. 

Since the energy levels are not that accurately known and in addition the thermal 

conductivity data can not be fit that precisely.  

The T1u→Eg transition, however, cannot have an appreciable effect on the thermal 

conductivity since in order to populate T1u, one has to go to temperatures so high 

that the dominant phonons have energies considerably larger than the separation 

of T1u and Eg. The dominant phonons in carrying the heat current at low 

temperatures have the energy hwM 4kT. Where wM is the frequency for which 

the integrand, apart from , in the thermal- conductivity integral is a maximum.  



Thermal Conductivity and CN  doped Specific Heat... 

41 

 

 

Fig. 2.2. The energy levels in units of B
~

 as a fuction of the barrier parameter 

Bk
~

/
~

 for a linear molecule in an octahedral site.  

The second dip in the thermal conductivity requires a phonon resonance energy 

of 2
~ =18cm−1 which is about equal to that positions of the T1u (16.4cm−1) and T2u 

(18.6cm−1) levels.  

We conclude that there is a strong phonon coupling between these states and the 

tunneling states. Transitions to the librational level T2g(13.5cm−1) are not 

observed in the thermal conductivity.  
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This is in agreement with the low-temperature infrared spectra which indicate that 

the librational level is not greatly broadened. Furthermore, it appears generally 

true that librational levels do not scatter phonons strongly since NCO− in KCl 

which does not affect the thermal conductivity has librational levels spaced at 

about 4cm−1. 

No scattering by transitions to higher energy levels beginning at 25.5cm−1 is 

reflected in the thermal conductivity. There are several reasons for this. Some 

transitions will be eliminated by selection rules on the matrix elements. Secondly, 

there may be a mismatch between the energies of the allowed transitions and the 

energies of the dominant phonons available at a particular temperature. This 

combined with population considerations for the CN− levels could rule out the 

possibility of seeing dips at higher temperatures. Finally, the umklap scattering 

rate increases exponentially with temperature and eventually dominates all other 

scattering mechanisms. 

We should note that the T1u (16.4cm−1  and T2u (18.6cm−1) levels, which we 

believe to be responsible for the depression in the thermal conductivity  at 60K, 

lie just about at the top of the potential barrier (19cm−1) above A1g) and hence are 

the first rotational states of the molecule. Phonon-induced transitions between 

higher rotational states although not observed in the thermal conductivity, would 

account for the missing fine structure in the high temperature infrared spectra. 

2.4 Thermal Conductivity of KBr: CN, KI: CN AND NaCl: CN  

Fig. (2.3) shows that the phonon scattering by CN in KBr is very nearly the same 

as in KCl. The only difference is that the 60K resonance in KBr: CN is 

considerably broader. Here again the positions of the resonance can be explained 

in the same way as in the case of KCl: CN since the infrared spectra of KBr: CN 

and KCl : CN are virtually the same.  
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Fig. 2.3 Thermal conductivity of KBr: CN. CN− concentrations are: (A) 

undoped, (B) −4.21017cm−3 (C) −6.81018cm−3, NCO− concentrations are B-

3 1018 cm−3 and C-71018cm−3. 

The thermal conductivity of one KI crystal containing 51019 CN− cm−3 was 

measured between 0.30 and 1.50K. The data points were almost identical to those 

in the lower portion of the curve C in Fig. (2.3).  

Since the CN− concentration in the KI crystal was about 5 times that in the sample 

(C) we conclude that the scattering is weaker in KI but otherwise the same for 

small w(1.61011−81011 rad. sec−1).  

The weaker coupling to the phonons as reflected in the thermal conductivity is 

consistent with the optical data for CN− in KI where there are the first indications 

of the resolution of the tunneling splitting.  

Temperature in degrees kelvin 
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In the previous three systems two resonances in the phonon scattering can be 

explained with the energy level diagram based on spectroscopic data.  

One of the phonon resonance energies matches the tunneling splitting of the CN−. 

The other matches the energy difference between the ground state and rotational 

states lying at the top of the potential well.  

To test the generality of this model CN− in NaCl was studied. Here the infrared 

spectra show that the CN− is frozen in there is no tunneling splitting and the 

rotational states lie at least 100cm−1 above the ground state.  

We would expect, therefore, no effect on the thermal conductivity except perhaps 

at high temperatures. Fig. (2.4) shows the NaCl: CN thermal conductivity results. 

Indeed, at low temperatures the CN− has no effect.  

The depression at 400K may be caused by scattering of the CN− both as a molecule 

and as a point defect. Similar high temperature depressions have been observed 

in the thermal conductivity of crystals containing about the same concentration 

of monatomic defects37.  

Assuming, however, that the scattering is caused by rotational states of the CN− 

lying at the top of the potential barrier. We estimate the barrier height to be 

140cm−1 from the position of the dip in the thermal conductivity.  

This is in agreement with infrared data discussed proviously which place the 

barrier about 100cm−1.  
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Fig. 2.4: Thermal conductivity of NaCl: CN (A) undoped (B) has 61019 CN− 

cm−3 and 51017 NCO cm−3. 

2.5 Specific Heat of KCl− : CN 

Direct evidence for the existence of the tunneling splitting can be obtained with 

specific heat measurements. The tunneling states should produce a Schottky type 

anomaly similar to that found in paramagnetic salts having a ground state which 

is split by the crystalline field42.  

Ignoring for the moment all levels but the tunneling levels the specific heat may 

be written as:  

Temperature in degrees kelvin 
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Fig. 2.5:  Specific heat Cv of KCl− : CN. 
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Where, 0, 1 and 2 refer to the A1g, T1u and Eg levels respectively, i is the energy 

of the jth level above the ground state, A1g,gi is the degeneracy of the jth level, and 

N is the number of molecules.  

From this expression the entropy may be calculated and particularly the change 

in entropy in going from temperature in which all of the molecules are in the 

ground state to one in which there is an equal probability for the molecule to be 

in any one of the 6 states. From statistical mechanics this change in entropy is s 

= k ln 6 per molecule and is independent of how the levels are spaced.  
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The measured specific heat of KCl: CN is shown in the fig. (2.5). The graph 

shows dramatically the size of the anomaly relative to the size of the lattice 

specific heat, curve D, but in order to analyse the anomaly the lattice specific heat 

must be subtracted fig. (2.6). The theoratical curve (1), calculated from equation 

(2.6) using the energies and degeneracies from fig. (2.2), is the expected Schottky 

specific heat for same (B). Curves (B) and (C) exhibit the same shape below 1.50K 

indicating that the level spacing is in reasonable agreement with the predicted but 

both curves are broader than calculated. We attribute this broadening to the 

residual strain in the crystal that was previously discussed.  

 

Fig. 2.6: Curve A, B, C are the specific heat of KCl: CN with KCl lattice 

specific heat subtracted.  

For a quantitative comparison between theory and experiment the change in 

entropy S was determined by graphical integration of the measured Cv/T curves 

between 0.30 and 4.20K. 



Thermal Conductivity and CN  doped Specific Heat... 

48 

 

  SB = NB k In (6.3+0.6)  

  Sc = NCk In (5.6  0.6) ...........................  (2.7) 

This demonstrates not only that the specific heat anomaly scales with the CN− 

concentration but also that the tunnelling levels in fact consist of a total of 6 states 

as expected in the case of six <100> equilibrium orientations. Curve (A), N = 

7.21019cm−1,  does not show the expected maximum in the specific at 0.70K. Its 

shape is somewhat similar to the specific heat measured on KCl: OH43. In our 

case, however, it is not possible to explain this as a dipole- dipole interaction 

leading to antiferroelectric ordering of the CN− dipoles44, with the smaller CN− 

dipole moment and for this concentration the critical temperature TC would be 

about 0.70K for a uniform distribution of the ions45. Unless the CN− ions were 

nonrandom in crystal (A) we must assume that some other defects were producing 

a change in the energy levels of the CN− ions. It should be noted that in this 

sample, compared to the samples of the IR and the thermal conductivity studies, 

the CN− concentration was 10 times higher, NNC0= 2.51019cm−3. The librational 

energy levels of NCO− ions  and the higher states of the CN− ion, fig. (2.2), 

certainly account for the rise in specific heat above 20K observed in all three 

samples, as indicated in fig. (2.6). 

2.6 Influence of An Electric Field on The Thermal Conductivity: 

An electric field should change the energy levels of the CN− ion. Thus, effect 

turned out to be too small to be detected in the infrared. There is, however, a large 

effect on the thermal conductivity as shown in fig. (2.7). Therefore, the change in 

thermal resistivity on applying an electric field divided by the zero- field 

resistivity is plotted versus temperature. The curves are similar for KCl and KBr 

except that in KBr the curves are shifted to lower temperatures.  
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In order to understand this effect let us first assume that the electric field increases 

the ground state splitting of 1.6cm−1 which was expected from the thermal 

conductivity data as shown in fig. (2.1 and 2.8). We computed the conductivity 

for a splitting of 1.9cm−1 and found a change quite similar to the effect measured 

for KCl. Furthermore, assuming that this additional splitting (0.3 cm−1) is simply 

 = 2CN− E. We determined for E = 30 kV/cm,  CN− ~ 0.3D, in agreement 

with the accepted value.  

 

 

 

 

 

 

 

 

 

 

 

Temperature in degrees kelvin 

Fig.2.7: Relative change in thermal resistivity on applying an electric field E. 
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2.7 Discussion: 

From fig. (2.4) we see that at low temperatures the CN− has no effect. The 

depression at 400K may be caused by scattering of the CN− both as a molecule 

and as a point defect. Similar high temperature depressions have been observed 

in the thermal conductivity of crystals constaining about the same concentration 

of nonatomic defects. Assuming that the scattering is caused by rotational states 

of the  CN− lying at the top of the potential barrier, we calculate the barrier height 

to be 140 cm−1 from the position of the dip in the thermal conductivity, which is 

in agreement with the I.R. data. A comparison of the KCl and KBr data shows 

that such sample picture is inadequate. Instead one must calculate the field 

dependence of the energy levels fig. (2.2) and it is conceivable that this would be 

different for the two host lattices. It appears that experiments of this kind can 

provide a better understanding of the lowest energy states of the molecules in 

solids.  

Fig. (2.5) gives the measured specific heat of KCl: CN. The graph shows 

dramatically the size of the anomaly relative to the size of the lattice specific heat, 

curve D. In order to analyse the anomaly the lattice specific heat must be 

subtracted, fig. (2.6). The theoretical curve 1, calculated from equation (2.6) using 

the energies and degeneracies from equation (2.2), is the expected Schottky 

specific heat for the sample (B). Curves (B) & (C) exhibit the same shape below 

1.50K indicating that the level spacing is in reasonable agreement with the 

prediction but both curves are broader than the calculated curves. The broadening 

is attributed to the residual strain in the crystal.  
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Chapter 3 

Chapter 3: Shift of the Intramolecular Vibrational Line of OH- 

Impurity in Alkali Halide Crystals 

3.1 Introduction: 

Recently much more interests have been devoted to study the rotational degrees 

of freedom of molecules in solids. Experiments on the matrix properties of 

hydroxylation alkali halide crystals have presented several interesting features. 

The tunneling splitting, para electric resonance and the isotope effect of the 

librational frequencies have also been well understood in terms of Different 

theoretical models. Low temperature specific heat measurements have shown the 

existence of low-lying tunneling levels. Spectroscopic studies show the presence 

of librational lines. These librational lines are observed as sum satellites to the 

intramolecular vibrational absorption. The quantitative interpretation of these 

librational and tunneling levels has successfully been done in terms of Devonshire 

model. The band center is observed at different positions in the different crystal 

systems.  

In the present chapter, we try to explain the shift of the intermolecular vibrational 

absorption of the impurity in different alkali halide crystals on Buckingham's 

theory. This theory can very well account for the observed shift of the band center 

of the CN− impurity in alkali matrices, provided proper lattice distortion around 

the impurity is suitably considered. The amount of the lattice distortion needed to 

explain the observed shift agrees well with that obtained on the basis of Brauer's 

method of calculating lattice distortion.  

3.2 Principle: 

When a polyatomic impurity molecule is substituted in a crystal matrix, the 

molecular interactions between the impurity and the host crystal matrix ions 
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modify the stretching or bending vibrational spectra of the impurity in a number 

of ways as follows:  

a. The frequency of the normal vibrational modes of the substituted impurity 

molecule may be shifted to higher or lower values. 

b. The intensities of the bands may change by factors of ten or even more.  

c. The half width of the lines may be greatly increased and  

d. The combination bands involving simultaneous transitions in the impurity 

molecule and one or more of its neighbours may be induced.  

A study of these spectral features can yield much information about the 

intermolecular as well as the intramolecular forces. In this chapter the study of 

the shift of the stretching frequency of OH− ions trapped in alkali halid crystal 

matrices has been predicted.  

Buckingham46 has evaluated the effects of the solute solvent interaction on the 

vibrational spectrum of a dissolved molecule in a solvent matrix. The essential 

assumption of this theory is that of the interaction energy U between the impurity 

molecule and the near neighbours can be expanded, as a power series in the 

normal coordinates  of the impurity molecule. The normal co-ordinate  is 

defined as:  

 = (r − re)/ re..............................(3.1) 

where r is the intermolecular separation of the impurity molecule and re is its 

equilibrium value. 

The total Hamiltonian Hs for the problem is given by 

 Hs = H0+ 
e

e

B

cw

4


(A 3 + B4 + .......................+U) ................(3.2) 
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is the unperturbed Hamiltonian. The second and the third terms on the RHS of 

the equation (3.2) are the anharmonic and the interaction energy terms 

respectively. In Buckingham theory46 these terms are treated as perturbation to 

the unperturbed harmonic oscillator Hamiltoniam, H0. By applying the 1st and 

second order perturbation theory, the Eigen values of the Hamiltonian Hs for the 

nth state are evaluated as:  
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The solvent shift for an absorption line appearing because of a transition from 

mth to nth state can now be worked out and written in a complete form as follows: 
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e ......................(3.6) 

Thus the shift of the fundamental (0→) band -center is given by  

( ) 
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

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W
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U

hcw

B
W

ee

e .................. (3.7) 

In the above equation, Be is the rotational constant, We is the harmonic stretching 

frequency and A & B are the anharmonicity constant for the free molecule. U' 
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and U" are the first and second derivatives respectively, of the interaction energy 

U with respect to the normal co-ordinate  of the impurity molecule.84-89  

In the present case of OH−  ions trapped in the alkali halide matrices, U may be 

written as 

b
RRR

e
U sHsH 6

666
8

2

6

22

+−−−=


   exp 

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 −+ −+



Rrr
 ................................(3.8) 

Here the first term is the charge- charge interaction term and does not contribute 

to the shift of the band center.90-91 The second and 3rd terms are the dipole- 

induced-dipole and the quadrupole- induced- quadrupole interaction terms 

respectively. These are the long range interaction terms and give a red shift to the 

frequency of the band center as follows: 
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Where R is the distance between the molecular impurity and one of the nearest 

neighbours, s and s are electric dipole and quadrupole moments respectively of 

the impurity molecule and H is the polarizability of the nearest neighbour host- 

matrix ions.92-95 The 4th term of the right hand side of equation (3.8) is the 

repulsive interaction term.    

For this interaction we have taken the Born- Mayer- Huggins form of the 

potential. This gives a blue shift to the band centre, which may be expressed as,  

  ( ) ( ) 




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p

x
BxxAW rep

22 /2  exp. (x).............(3.10) 

 Where x = (r++ r− −R)/ .........................................(3.11) 
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In these equations, b and  are the potential parameters of the Born- Mayer- 

Huggins generalized potential, b is a constant for the entire family of alkali halide 

crystals, whereas  changes from one type of interacting ion perpendicular to the 

other.  

It can be seen that the parameter X depends on the nature of the matrix as well as 

that of the impurity. On the other hand, the parameter A, B and C depends only 

on the rate of change of the potential parameters with the vibrational state of the 

impurity. 

3.3 Lattice Distortion Around the Oh− Impurity In Alkali Halide Crystals: 

A precise knowledge of lattice distortion around the point defects in solid crystals 

is of the first order importance in understanding the various properties connected 

with such defect systems.  

These properties include the calculation of self energy of the defects, interaction 

between the defects the X-ray diffraction effect and the quadrupolar broadening 

of the NMR lines. There are two different lines of theoretical approach for 

calculating the lattice distortion around the substituted point defects.  
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The first line of approach is based on the isotropic elasticity theory. The second 

line of approach is based on the discrete nature of the lattice.  

We have adopted the Brauer's method47 of calculation which is based on the first 

type of approach.  

The second line of approach has been used by Kauzaki and has been further 

developed by Hardy49 and by Caldwell and Klein50.  

The method of Hardy and Caldwell and Klein are equivalent to each other. We 

have adopted the method of Caldwell and Klein for calculating the lattice 

distortion in our case.  

3.3.1 Brauer's Method: 

This method assumes that isotropic displacement of the near neighbour around 

the impurity. The displacement of the neighbouring ions is assumed to obey the 

inverse square law  

222

0
1

1 nm

u
u mn

++
=  ..................... (3.13) 

Where u0 is the displacement of the nearest neighbour ions and u1mn is that of the 

ion at (1, m, n)  lattice site.  

The displacement u = R0, (R0= pure lattice constant) and the induced electronic 

dipole moment  in the six nearest neighbours are treated as unknowns. These 

two unknowns are determined by solving the following two equations:  

Fe + Fr = 0 .................(3.14) 

and 
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= − 
e

Fe ......................(3.15) 

Here the first equation arises due to the equilibrium condition whereas second 

one comes from the definition of the induced electric dipole moment itself. 

From the symmetry of the Fcc lattice it can be seen that the electrical force Fe and 

the  repulsive force Fr are acting along the <100> directions. For the impurity 

doped alkali halide crystals, the electrical force Fe on (1, 0, 0) ion is given by 
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In this equation, the first, second and third terms on the right hand side represent 

the force on (1,0,0) ion due to the displacements of the five other nearest 

neighbours.  

The Fourth term is due to the induced dipole moment  in five ions. The last term 

gives the force due to the dipole moments associated with the elastic components 

of the ionic displacements. 

The energy of the repulsive interaction between the (1,0,0) ion and its nearest 

neighbour is given by,  
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The function V are the Born- Mayer- Huggins generalised potential functions. 

The suffix refers to the potential energy between the impurity and the six nearest 

neighbour ions. Thus the repulsive Force Fr on the (1,0,0) ion may be obtained 

as,  
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The equilibrium positions of the nearest neighbour ions can now be determined 

from the equations (3.14) and (3.15) by using the graphical solution method. 

3.3.2 Hardy's Method:   

Hardy49 considers a hypothetical super lattice of the impurity ions, which 

possesses the same structure as the host crystal lattice, and the unit cell much 

larger than that of the host crystal lattice.  

Thus the ionic displacement is associated with the super- lattice periodicity and 

therefore, can be expanded in Fourier series. Then the Fourier transform of the 

displacement is obtained from the minimization condition of the increase in the 

energy of the system due to introduction of the impurity. The exact coulomb and 

the repulsive potentials are used in calculating the energy increase for the nearest 

neighbour ions.86-88 For all other ions, it is approximated by a quadratic function 

of the displacements.  
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The final expression for the displacement, u0, of the nearest neighbour ions is 

obtained by  

u0=0Fe .................. (3.20) 

Where 0 is the constant depending upon the host- matrix only. The repulsive 

Force Fr, when the nearest neighbours are displaced by u0, is given by:  

( ) ( ) ( )







−−+


= 0

2

00000

0

"
2

1
' RVuRVuuRV

du
F sr ...........(3.21) 

The value of u0 is obtained from the equation (3.20) and (3.21) by following an 

iterative procedure.  

3.3.3 Caldwell And Klein's Method: 

This method, although uses a different language, is equivalent to that of Hardy49. 

On substitution of the impurity, the force vector along the bond- length between 

the substituted site and the nearest neighbour sites changes. This change, in 

general, is given by  

 ( ) ( ) ( )( )( ) LuVLuVLF jpjp

i

jp −−= // 0
........................(3.22) 

Where L denotes the unit cell, p denotes the type of the ion and j gives the certain 

co-ordinates x,y and z. R0 is the old equilibrium position of the nearest neighbour 

ion and u is the displacement from the equilibrium position. The impurity is taken 

to be at the origin. The subscript 0 denotes the pure crystal bond and I denotes 

that of between the impurity and its nearest neighbours. The first term on the right 

hard side in equation (3.22) is evaluated at the new equilibrium position and the 

second one is evaluated at the old equilibrium position. The vector Fjp(L) is 

localized and has A1g symmetry. One may therefore write  

( )LeFLF jp

A

jp

g1
.)( = .................... (3.23) 
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where 

( ) = g

jp

A ALe
g 11

 

is the unit vector of A1g symmetry having components defined on the nearest 

neighbour sites. In this way  

( ) jj

jp

A JRe
g

6/101
= , 

if prefers to the nearest neighbour ions 

=O, at all other sites............(3.24) 

and 

F = ( ) ( ) 0

'

00

'

1 RVuRV −+− ................(3.25) 

The change in force vector, Fjp(L), will be isolated by the assumed harmonic 

response of the rest of the lattice. Thus, at the equilibrium position 

( ) ( ) 0''')(
'

'''

''

=







−− 

J

pjjj

PL

jp correctionLuLLppLF  ............................(3.26) 

Hence  is the unperturbed coupling constant matrix in terms of the second 

derivatives of the potential energy V. 

Introduction of the correction term becomes necessary because of the fact that the 

short range forces between the impurity and the nearest ions have already been 

taken into consideration. The correction term can be written as follows. 

Correction = )(
1

"

0 LueV jp

A g
.................................... (3.27) 
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Let  represent the matrix with components )('' Lppjj and u  represent a column 

vector with the components ujp(L). 

Then using equation (3.23) and (3.27), the equilibrium condition (3.26) becomes.  

( )uVFAu g

"

01

1 += −  

Thus, 

( )uVFAAuAu ggg

"

01

1

11 +== −  

or, 

( ) rHgr FMAGFu /100 == .................(3.28) 

where,  

( )uVFFr

"

0+=  

In the equation (3.28), MH is the mass of the nearest neighbour ion and G0(A1g) 

is the static Green's function of spherical symmetry. Equation (3.28) shows 

similarity of this method with that of Hardy49. 

3.4 Frequency of The Free OH− ION Band- Center: 

A knowledge of the free OH− ion frequently is necessary in order to evaluate the 

shift of the stretching band-center of the matrix trapped OH− ion. Unfortunately, 

there are no precise measurements or calculations for the stretching frequency of 

the free OH− ion. 

From photo detachment measurements, Branscomb51 has estimated We for free 

OH− ion as 3735+560cm−1. Wedding and Klein52 have given the value of wexe for 

OH− (in KBr matrix) as 85.8cm−1.  
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This, with the Branscomb's51 value of We, gives the free ion stretching frequency 

as 3564 cm−1 with the same uncertainty as reported for We by Branscomb (viz. 

560cm−1). 

Cade53 calculations have predicted the value of We for free OH−  ion to lie in the 

range 3733-3820cm−1 using this value for We and taking WeXe =85.5 cm−1, 

Wedding and Klein52 estimate  the stretching frequency for free OH−  to lie in the 

range 3560-3650cm−1. According to them, one generally expects the free ion 

stretching frequency to be lower than that for the ionic matrix trapped impurity 

ion.  

Thus, the free OH− ion frequency W should be less than 3603 cm−1 which is the 

lowest observed value of the stretching frequency in an alkali halide matrix52.  

The stretching frequency for free ion, neutal OH0, has been given as 3569 cm−1. 

Imposition of a change on the neutral OH0 would soften the intermolecular force 

constant and reduce the stretching frequency.  

Thus, an upper limit for the free OH− ion frequency can be set at the value 

3569cm−1 and the expected range is narrowed down to 3560-3569 cm−1. 

From the Buckingham's theory, the ratio w/w for a given matrix material 

remains the same for the isotropically substituted impurities. Mann et. al.54 have 

utilized this fact in dealing with the band center shift for HCl, DCl, HBr and DBr 

impurities trapped in the rare gas matrices.  

Following the same line, we determining the stretching frequency for fee OH− & 

OD− ions as 3564.5 and 2628.8 cm−1 respectively.  

Our estimated value of free OH− ion stretching frequency lies well within the 

range provided in the above arguments by several other workers 51-53. 



Shift of the Intramolecular Vibrational Line…… 

63 

 

In our method of estimating the free OH− ion stretching frequency the input data 

are the absorption frequencies of the OH− ion trapped in alkali halide matrices. 

These are available with an uncertainty of 0.5cm−1.52  

Thus the uncertainty in our estimated value is much lower than that in those 

obtained from the data of Branscomb51.  

The isotropic- shift results obtained from our values are given in the table 3.1. 

These are also in good agreement with theory put an additional reliance on the 

correctness of our results.  

Table-3.1 

Effect of the isotropic substitution of shift of the band center of hydroxyl ion 

impurity in alkali halide matrices. 

Matrix w/w for OH− w/w for OD− 

KCl 

KBr 

NaCl 

LiF 

0.0214 

0.0148 

0.0255 

0.0467 

0.0211 

0.0148 

0.0230 

0.0450 

 3.5 Results and Discussions: 

Table (3.2) gives the values of the various constants used in the present 

calculations. Table (3.3) gives the calculated shifts of the band-center and 

compares it with the experimentally observed results. The total shift has been 

expressed as the sum of a red and a blue contribution, as already described. It can 

be seen from the table that the blue shift, corresponding to the repulsive 

interaction dominates over the red shift.  
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This is in qualitative agreement with the experimental results. For a quantitative 

discussion, it may be mentioned that the shifts are to be evaluated under the 

handicap of no precise information about the parameters A, B and C in equations 

(3.10) and (3.12).  

Their values, therefore, are to be determined from the observed values of the 

shifts themselves. We use the shift data of LiF, NaF and NaCl matrices to obtain 

the parameters A,B and C by making use of the equation (3.10). These systems 

have been chosen because the lattice distortion in these cases is known. We have 

taken the OH− ion as being equivalent to the isoelectric F− ion. Thus, no lattice 

distortion is expected in LiF and NaF matrices.  

Lattice distortion for the NaCl − OH−  (F−) system in known for the Fukai's 

measurements of the quadrupolar broadening of NMR line55. These are obtained 

as A = 167-304, B = − 8.166910−16 and C = +5.2359 10−8 units. The fifth 

column of the table represents the shifts obtained for these and a number of other 

matrices with above mentioned values of the parameter A, B and C. It can be seen 

that such a calculation does not explain the observed shifts in a consistent manner.  

The following causes can be attributed to this discrepancy:  

1. The polarizability values of the captions and anions become increasingly 

uncertain for small inter-ionic separation56. As the parameters A, B and C 

have been obtained from the observed shifts in NaF, LiF and NaCl 

matrices, it is quite likely that the uncertain values of the polarizability in 

these cases might affect adversely the values of the parameters A,B, and C 

thereby giving an incorrect shift in the other systems also.  

2. The localized lattice vibrations of the surrounding lattice points can also 

affect the position of the band- center. This effect has been found to be 

important in understanding the shift of the librational and tunneling levels 
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of these impurity matrix- systems 57,58. When an impurity is added to the 

crystal, the near neighbouring atoms move to the new equilibrium 

positions, depending upon the host crystal matrix and the nature and size 

of the impurity. Such displacements have been found to of much 

importance in understanding the thermal conductivity measurements50 and 

the quadrupolar broadening of the NMR lines55.  More recently de Jong59 

has made the use of elastic relaxation of lattice around impurity ions 

substituted in KI matrix, in order to explain the frequency of the impurity 

induced gap modes. It is quite likely that these same elastic displacements 

of the nearest neibhrour atoms are responsible for the difference in the 

calculated and the observed shift of the band- center.  

For the item (1) it can be said that the polarizability values affect only the red 

contribution of the shift. As can be seen from the table (3.3), this is just 1% of the 

total shift and hence any error in the polarizability values will not affect the results 

much. For the item (2), it has been observed that this effect is more important for 

the tunneling level than for the librational level58. It has been well realized, that 

larger the frequency of the motional state of the impurity, the smaller is the effect 

of the localized vibrations on it. The shift of the band-center is, therefore, not 

expected to be much affected by coupling with the localized lattice vibrations.  

It is the third item, therefore, which is added to be the chief cause of the present 

disagreement between the calculated and the observed shifts. To evaluate this 

effect one should first calculate theoretically the isotropic displacement of the 

nearest neighbours of the impurity and then work out its effect on the position of 

the band- center.  

However, we do it in the reverse way. Table (3.4) gives the value of the 

displacement of the nearest neighbours needed to fit the calculated shifts to the 

experimental values.  
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We have taken that OH− ion as approximately spherical and equivalent to the 

fluoride ion which is isoelectronic to it. Thus, we have made use of the repulsive 

potential parameters of alkali fluorides for OH− ions trapped in the alkali halide 

matrices47, Recently, Ward and Timusk60 have presented the experimental results 

of the impurity induced far-infrared absorption for KBr- OH− and KBr-F− 

systems. Both the systems have resonances at 37cm−1, and in general appearances 

the spectra of these systems are quite similar, as expected from a nearly similar 

electronic structure of these impurities. Also, in their theoretical calculations, 

Ward and Timusk60 have used the same force constant for OH− and F− impurities.  

The lattice distortions around the impurity have also been calculated following 

the well-known method of Brauer47 and Caldwell and Klein50, separately.  

The results of lattice distortion obtained experimentally by other workers50,61 have 

also been given in the table (3.4) along with those obtained from the Brauer47 and 

Caldwell and Klein's50 methods. It can be seen that the lattice distortion needed 

to explain the observed shift, agree well with those calculated from the different 

models47,50 and observed experimentally50,61. 

Table-3.2 

The constants used in the calculations. 

Systems aR0
 

A0 

b

H  

30A  

a

r  

+ 

0A  

a

r  

− 

0A  

a

  

0A  

c

er  

0A  














d

d s
d

er  

          0A  

KCl- OH− 3.139 3.29 1.463 1.179 .338 .974 0.143 

KBr- OH− 3.293 3.29 ,, 1.179 ,, ,, ,, 

KI- OH− 3.526 3.29 ,, ,, ,, ,, ,, 

RbCl- OH− 3.270 4.56 1.587 ,, .328 ,, ,, 

NaBr- OH− 2.981 1.57 1.170 ,, .330 ,, ,, 
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Systems aR0
 

A0 

b

H  

30A  

a

r  

+ 

0A  

a

r  

− 

0A  

a

  

0A  

c

er  

0A  














d

d s
d

er  

          0A  

NaCl- OH− 2.814 ,, ,, ,, ,, ,, ,, 

NaF- OH− 2.310 ,, ,, ,, ,, ,, ,, 

Lif- OH− 2.010 1.00 0.816 ,, .299 ,, ,, 

 a - Reference - 62 

 b - Reference - 63 

 c - Reference - 64 

 d - Reference - 52 

Table-3.3 

Calculated and observed values of the shift of the band-center, when lattice 

distrotion is not considered and when it is considered. 

System Observed 

shift of 

the band-

center 

cm−1 

 Calculated shiftA 

 

 Calculated shiftB 

Red 

shift 

equation 

(3.5) 

cm−1 

Blue 

shift 

equation 

(3.6) 

cm−1 

Total 

Shift 

cm−1 

Red 

shift 

equa

tion 

(3.5) 

cm−1 

Blue 

shift 

equati

on 

(3.6) 

cm−1 

Total 

Shift 

cm−1 

KCl- OH− 76.50.5a −.5 56.5 56.00 −.6 77.6 77.0 

KBr- OH− 53.00.5a −.4 30.2 29.8 −.5 53.5 53.0 

KI- OH− 38.51.0c −.2 6.7 6.5 −.3 38.8 38.5 

RbCl- OH− 68.00.5d −.5 52.9 52.4 −.6 67.6 67.0 

NaBr- OH− 61.5 .5a −.3 30.9 30.6 −.4 61.9 61.5 
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System Observed 

shift of 

the band-

center 

cm−1 

 Calculated shiftA 

 

 Calculated shiftB 

Red 

shift 

equation 

(3.5) 

cm−1 

Blue 

shift 

equation 

(3.6) 

cm−1 

Total 

Shift 

cm−1 

Red 

shift 

equa

tion 

(3.5) 

cm−1 

Blue 

shift 

equati

on 

(3.6) 

cm−1 

Total 

Shift 

cm−1 

NaCl- OH− 90.00.5a −.5 90.5 90.0 −.6 90.6 90.0 

NaF- OH− 163.5b −1.5 165.0 163.5 −1.5 165.0 163.0 

Lif- OH− 166.5e −2.0 168.5 166.5 −2.0 168.0 166.5 

A - When lattice distortion is not considered 

B - When lattice distortion is considered. 

a- Reference -52, 

b- Reference -65, 

c- Reference -66, 

d- Reference -67, 

e- Reference -68. 

Table-3.3 

Calculated and observed values of the shift of the band- center, when 

lattice distortion is not considered and when it is considered. 

Systems Observe

d shift of 

the 

band- 

center 

cm−1 

Calculated shift Calculated shift 

Red 

shift 

cm−1 

Blue 

shift 

cm−1 

Total 

Shift 

cm−1 

Red 

shift 

cm−1 

Blue 

shift 

cm−1 

Total 

Shift 

cm−1 

KCl- OD− 55.7.5a −.4 41.1 40.8 −.4 56.5 56.1 

KBr- OD− 39.2.5a −.3 22.0 21.7 −.4 38.9 38.5 

NaCl- OD− 60.2a −.4 65.9 65.3 −.4 65.9 65.5 

Lif- OD− 118.2e −.4 122.7 121.2 −1.4 122.6 121.2 
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Table-3.4 

Lattice distortion parameter required to explain the observed shift of the band- 

center (in OH−/OD− substituted alkali halide matrices) as compared with their 

calculated values on the basis of Brauers and Hardy's theoretical model or 

obtained from other experimental studies.  

System Percentage lattice distortion parameter 

Required to 

explain the 

observed 

shift of the 

band-center 

Calculated 

from 

Brauers 

methoda 

Hardy's 

method as 

modified by 

Klein at al.b 

Other 

experimental 

values. 

KCl- OH− −3.0 −3.0 −4.0 2.7c 

KBr- OH− −4.2 −5.0 −4.2 - 

KI- OH− 8.2 −7.1 −3.6 - 

RbCl- OH− −2.0 −2.3 −3.3 - 

NaBr- OH− −5.6 −6.1 −6.2 - 

NaCl- OH− −4.2 −5.2 6.5 4.2d 

NaF- OH− 0.0 0.0 0.0 - 

Lif- OH− 0.0 0.0 0.0 - 

a- Reference -47, 

b- Reference -49,50 

c- Reference -61, 

d- Reference -55.  
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Chapter 4 

Chapter 4: Off-Centre Direction of Impurities in Alkali Halide 

Crystal Matrics 

4.1 Introduction: 

An accurate calculation of the barrier hindering angular motion of polar 

impurities in alkali halide crystal systems requires an adequate knowledge of the 

interaction between the impurity molecule and the ions of the host crystal matrix. 

The possible off-center displacement of the impurity's center of mass from the 

normal lattice site can be obtained by determining the minimum energy 

configuration of the combined impurity-matrix system. For rigorous 

determination of the off-center displacement, one requires to calculate the 

variation of the energy of the system as a function of the impurity's displacement. 

Such type of calculations have been done for Li+ impurity trapped in alkali halide 

crystals for which the potential form is well known. Unfortunately, such 

potentials are not available for the dipolar impurity -host matrix ion systems, and 

hence the calculation of this type is very difficult to be done for the present 

systems. 

The present calculation of the displaced position of the impurity center of mass 

(CM) is based on the multipole expansion method of the intermolecular 

interaction. The idea of possible off-center displacement of the CM of the dipolar 

impurity in alkali halide matrices was first suggested by Seward and 

Narayanamurti69. The reason for such a displacement can be stated as follows: 

The equilibrium position of the impurity in the matrix cavity is described by the 

minimum energy configuration of the impurity matrix system. The interaction 

energy depends upon the distribution of charges in the dipolar impurity and that 

in the ions of the host matrix. Consequently, the point of the impurity that rests 
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at the normal lattice site in the minimum energy configuration will depend upon 

the distribution of charge and not upon the distribution of masses in the impurity. 

We call this point the center of interaction (CI), because it is this point at which 

the effective crystalline field interaction acts. Essentially, the CI need not 

coincide with the CM, because the latter is governed by the distribution of masses 

in the impurity. We assume that the angular anisotropy of interaction is also 

minimum about the center of interaction. Our assumptions are as follows:  

1. The impurity occupies a substitutional site in the host matrix cage with its 

CI and not the CM at the normal lattice site. 

2. The angular anisotropy of the interaction is minimum about the CI. The 

concept of CI has recently been introduced by a number of workers70 and 

the parameter (Separation between the molecular CI and CM) has been 

demonstrated to be of much importance in understanding a number of 

molecular problems in the gaseous phase. Such a concept of molecular CI 

has to also lead to the understanding of the matrix spectra of HCl and HBr 

type of impurities in rare gas matrices at low temperatures.  

So far as the properties of this CI are concerned, the following points may be 

mentioned. 

1. Where there is a symmetric charge distribution in the molecule, the CI can 

be taken as located at the center of symmetry. 

2. For an asymmetric charge distribution, CI is the point about which the 

angular dependence of the intermolecular interaction is minimum. The 

relative importance of various types of these interactions (like dispersion, 

induction, exchange and multipole interaction), which are not centered 

necessarily at the same point, is determined by the intermolecular distances 

and the environs of the impurity. The CI of an asymmetric molecule is, 
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therefore, not only a molecular constant but also depends upon the 

environment of the impurity. The position of the CI may also slightly 

depend upon the experimental conditions, such as temperature, pressure 

and state of aggregation etc. These latter small effects, however, will not 

be considered here.  

4.2 Monoatomic Impurities in Solid State Matrices: 

There are strong experimental as well as theoretical evidences for the off-centered 

position of certain monoatomic impurities doped in the alkali halide crystals. 

Electro-caloric measurements27 and the dielectric measurements28 have already 

established the existence of an off- centered positions for Li+ ions doped in the 

KCl matrix. The measurement of velocity of sound and absorption by Byer and 

Sack71 have showed that Li+ ions is displaced in one of the eight <111> directions 

in the KCl crystal matrices. The more recent far-infrared absorption 

measurements of Kirby et.al. 72 for the KCl−Li+ system, have given a value of 

the off-center displacement parameter 'a' as 1.2A0. For the RbCl−Ag+ system, 

however, controversial results have been obtained by Kirby et.al.72 and by 

Kaphan and Luty.73 Kaphan and Luty could explain their para-electric cooling 

results on the basis of a <111> displacement directions for Ag+ ion in RbCl 

matrix, whereas the multiplet structure of the far-infrared72 absorption ruled out 

such a configuration and presented evidences for a displacement in <110> 

direction. 

The theoretical calculations of Wilson et.al.82 have predicted an off-centered 

displacement for the Li+ ion in the NaCl matrix. The far-infrared absorption 

measurements by Kirby et.al.72 suggest that the Li+ impurity may have a central 

instability in the NaCl matrix. However, neither para- electric cooling nor 

tunneling effect in the para-elecric resonance has been observed for this system 

to give a definite proof of an off-centered configuration.  
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4.3 Determination of The Off-Center Direction: 

There are different theoretical models for the calculation of off- centered 

displacement and direction of the impurity ion in the crystal matrices. The 

methods of Quigley56 and that of Wilson et.al.82 determine the minimum energy 

configuration of the entire impurity crystal matrix system in different 

crystallographic directions. These calculations employ a polarizable point-ion 

model for the crystal and use generalized or some modified form of Born-Mayer 

potential for the repulsive interactions.  

Our method of approach is quite simple and determinations only the direction of 

the off-centered impurity ion. In analogy with the diatomic impurities can be 

pictured as performing a quasi-rotational motion with the moment of inertia.  

I = m a2, where a is the off-centered displacement of the impurity from the normal 

lattice site. Our method works on the calculation of certain barrier parameters for 

the quasi-rotational motion of the impurity ion.  

The angle dependent part of the crystalline-field potential at the impurity site will 

naturally have the octahedral symmetry. In the Devonshire model32, only the first 

significant angle dependent term (L = 4cm) is retained in the expansion of the 

octahedral potential in terms of spherical harmonics. The Devonshire potential in 

its simplest form can be written as:  

V(,)=V4= K(Sin4. Sin2. Cos2+Sin2.Cos2) ….(4.1) 

  Where K is a barrier parameter.  

It is well known that a positive K value gives a <100> equilibrium orientation to 

the impurity ion, whereas a negative K value gives a <111> equilibrium 

configuration. A <110> off-centered direction cannot be thought of in terms of 

the simple Deovnshire potential. Recently, it has been shown that a <110> 
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equilibrium orientation can be visualized only if one adds a large V6(L=6) term 

to the Devonshire octahedral potential32. This generalized potential then can be 

expresed as: 

V ( , ) = V4 +V6  

 = K (Sin4. Sin2 Cos2 + Sin2Cos2) 

+ K' [ Sin6 (Cos6+Sin6) + Cos6)] ............. (4.2) 

where K is a Devonshire barrier parameter and K' is an additional barrier 

parameter.  

Further, it has been shown75 that if the ratio K/K' lies between 3.0 and 1.5, the 

minimum energy configuration of the impurity will be along the <100> direction. 

Otherwise it will be along <111> or <100> direction depending upon the sign of 

the Devonshire barrier parameter K. In our method of calculation, we calculate 

only these barrier parameters on the basis of a simple model and determine from 

the ratio of K/K' or the sign of the parameter K, the equilibrium orientation 

direction of the impurity ion in the crystal matrix. 

For calculating the barrier parameter K and K', one can use either of the two 

specific models:  

(i) Point- charge- point- dipole model, introduced by Lawless.63 

(ii) Multipole- expansion model recently developed by Pandey et.al. 64 

For the case of atomic impurities with no intrinsic dipole moment, both the 

models give an identical result. A simple calculation yields the following results 

for the parameter K and K' as follows: 
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Here, R is the lattice constant of the host crystal and 'a' is the off- center 

displacement of the impurity in the host matrix. C and  represent the charge and 
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total polarizability respectively. The constants used in the calculations are 

tabulated in the table (4.1). 

4.4 Results and Discussions: 

In fig. (4.1) we report that calculation of the ratio K/K' as a function of the off- 

centered displacement parameter 'a'. In the same fig., we have marked the regions 

for the <111> and the <110> orientation based on the calculation of Mitra et al.75. 

In our calculation we have considered different summations upto the fourth 

neighbouring shell of the impurity.  

 

Fig. 4.1, Ratio K/K’ as a function of ‘a’ 
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Table-4.1 

Constants used in the calculation of the parameters K and K'. 

System Lattice 

Parameter R 

(A0) 

( )03Ab

H

+  ( )03Ab

H

−  ( )03Ab

S

+  

KCl−Li+ 3.139 3.29 4.98 1.00 

NaCl−Li+ 2.814 1.57 4.98 1.00 

RbCl−Ag+ 3.270 4.56 4.98 3.13 

a - Reference - 62   

b - Reference - 63   

For the RbCl −Ag+ system, it can be seen (4.1) that if the off- center position 

exceeds the value of 0.82A0, a <110> direction of displacement becomes more 

probable. The experimentally observed value of this parameter for RbCl− Ag+ 

system is 0.83  .08 A0 72, establishing the fact that probably it is an example of a 

boarder- line case. This can explain the reason of the controversy between the 

two authors72,73 and our calculations of K/K' for highly ordered crystal matrices. 

Dislocations and other imperfects near the impurity may stabilize either of the 

orientations. Hence the reason of the controversy may be attached to the use of 

improperly grown crystals and to the fact that this is an example of boarder-line 

case between <111> and <110> orientations. 

Large amount of the internal strain or internal electric fields are always present 

in a normal crystal. These have also been found to be responsible for the large 

line widths observed in the paraelectric resonance experiments and for the form 

of the specific heat anomaly of the paraelectrics. More recently Timme et.al.78 

have done paraelectric spectroscopy experiments on KCl− Li+ system with 
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different crystal orientations. Their results have been found to be in serious 

disagreement with the simple <111> model. They have observed the existence of 

two lines for certain crystal orientations, where only one is expected from the 

<111> model. Moreover, for certain other crystal orientations, they observe only 

one line whereas the <111> model predicts two lines to be observed. They 

explained the anomalous spectral features by incorporating the large internal 

strains in the crystal matrix around the impurity. Very recently Kaphan and Luty79 

have carried out a detailed study of the static and dynamic para-electric behaviour 

of Ag+ ion in RbCl and RbBr matrices, using the electrodichroism of Ag+ 

ultraviolet band. The static electro-optical measurements reveal a <110> 

orientation with the dipole moment value of 0.78A0 for RbCl−Ag+ system. 

The dynamical, time dependent electrodichroism measurements show the 

presence of two different relaxation processes for this system. This behaviour 

could be understood only in terms of a strong Eg distortion of the lattice. The off-

centered displacement value of 0.78A0, though lies in <111> region, is quite near 

to the border line fig. (4.1). 

In order to present the exact picture, perhaps, also the Eg distortion term is needed 

to be considered in the modified Devonshire potential equation (4.2). Our results 

for the RbCl−Ag+ system can also be compared with those of the experimental 

and theoretical studies of certain other workers 80,82 and Dreybroadt and 

Fussgaenger80 have observed the temperature dependence of the dipole strength 

of the (4a)10 →(4a)9 5s electronic transition of the Ag+ ion in the RbCl matrix. 

They also conclude that Ag+ ion sits in an off- centered position in the RbCl 

matrix. Their subsequent calculations indicate that the impurity is off-centered by 

about 0.25A0 in the <111> crystallographic direction. From figure (4.1) it can be 

seen that our calculations also present a <111> off-centered direction for a = 

0.25A0. A more recent calculation of Wilson et.al.82 gives the off-centered 
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displacement position .54 A0 in  the <111> direction. This is also consistent with 

our calculations (Fig. 4.1). 

For the sake of completeness, we are also presenting the calculations for KCl−Li+  

and NaCl −Li+ systems and determining the off-centered directions in these cases 

as well. For the KCl-Li+ figure (4.1) shows that for a value of 'a' greater than 

1.08A0, a <111> off centered position is plausible. The experimental value of the 

parameter 'a' is 1.2 A0 72, which predicts a <111> direction of displacement. This 

is in agreement with many experimental results72,81. For the NaCl−Li+ system, a 

<110> direction can be predicted only if 'a' becomes greater than 1.12A0. Such a 

high value of displacement parameter 'a' in a NaCl matrix (Lattice constant = 

2.81A0) is highly improbable. Hence, in this system also a <111> direction of the 

off-centered displacement is expected (if is an off-center system at all). This is 

also in agreement with the results of Wilson et.al.82  
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5. Conclusion 

5.1 Conclusion:  

Recently, keen interests have been devoted to study the rotational motion of 

molecules in solids of the alkali halide crystals doped with polar impurities at 

liquid helium/liquid nitrogen temperatures. Even a small concentration of these 

impurities shows pronounced effects on the optical, thermal and electrical 

properties of the host crystals. The introduction of the impurity in the crystal 

systems destroys the order of periodic symmetry of the crystal systems, which in 

turn modify thereby the normal modes of vibrations of the crystal from its usual 

plane wave form. Of course, the change is greatest in the vicinity of the defects. 

In addition to the effect of the impurity on the macroscopic properties of the host 

crystal, the purities themselves may have many characteristics that make them 

worthy of study in their own right. 

Infrared absorption, thermal conductivity, specific heat, shift of the 

intermolecular vibrational line (band center) and off-centered displacement are 

the best key tools for the problem of rotational motion of molecules in solids has 

been studied using CN−, OH− and Li+ ions substituted for the halogen in KCl, 

KBr, KI, RbCl, NaCl and NaBr. Every levels associated with the ion performing 

free rotation hindered rotation, oscillation, librational and tunneling motions were 

observed. It was found that a simple 3-dimensional potential for a linear diatomic 

molecule developed by Devonshire based on a 2-dimensional cosine potential 

first proposed by Pauling explained all of our observations. For the potassium 

halides the barrier height is 0.003, ev, in RbCl it is 0.0075 ev and in the sodium 

halides it is greater than 0.015 ev. Stress experiments show that the ion has six 

equilibrium orientations along the <100> directions.  
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At low temperatures (kT << V0) the infrared spectrum should consist of a strong 

Q branch with weak satellites separated from the fundamental by multiples of the 

librational frequency. At high temperatures (kT>V0) the spectrum should 

approximate that known for free molecules i.e., it should consist of P and R 

branches with a missing Q central branch. For intermediate temperatures (kT 

V0) the spectrum should consist of P, Q and R branches of comparable intensity. 

In quantum mechanical discussion of the states of rotational motion with the 

semi-classical picture of a rotating molecule one can describe the states below the 

barrier V0 as oscillatory motions of the molecule in a particular well. This does 

not imply that in these states the molecule cannot move from one well to another. 

Such a change of the orientation is of particular interest if the influence of an 

electric stress field is studied. This description fails if the reorientation takes place 

through a tunnel process which is purely quantum mechanical.  

A qualitative comparison of the KCl and KBr data with the selection rules 

indicates that below 200K the motion of the molecule can best be described as 

librational. Between 20 to 500K the molecule performs hindered rotational motion 

i.e., in this temperature’s region a significant number of molecules occupy energy 

states both above and below the barrier. Above 600K most of the molecules 

occupy energy states lying above the barrier and now the characteristic P and R 

maxima of free molecules are observed. Fig. (1.15) shows that the separation of 

the P and R maxima follow a 2

1

T  law predicted by equation (1.5). From these data 

the rotational constant 25.1
~
=B cm−1 is obtained for the KCl host lattice. From B

~

the moment of inertia I and hence the internuclear separation between the C and 

N atoms is calculated to r =1.4A0.  

Pauling has estimated that the radii of the carbon and nitrogen atoms to be 0.7 

and 0.77A0 from which a maximum value of 1.47 for the C−N bond length may 

be reduced.  
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Recently Elliot and Hastings have used 1.16A0 for the C−N bond length in pure 

KCN in order to fit their neutron-diffraction data. Considering the simplicity of 

the model used the agreement between the calculated and the experiment is 

considered very satisfactory.  

The infrared measurement on CN− in KCl, KBr, KI and RbCl have shown that at 

high temperatures the molecules can rotate freely in the lattice. At low 

temperatures the molecules perform librational motion with a frequency of 11 to 

12cm−1 in potassium halides and about 19cm−1 in RbCl. In addition uniaxial-stress 

measurements show that in these host lattices the CN− can reorient down to the 

lowest temperature of our measurement (1.360K), the minima in the potential 

function being the <100> directions. In NaCl and NaBr the CN− is locked in at 

low temperatures and the barrier hindering rotation is estimated to be greater than 

100 cm−1. Finally, the energy levels of the CN− in a six-well potential have been 

quantitatively considered for the potassium halides and RbCl in terms of 

Devonshire model. This model can explain a number of features of the IR data 

but predicts tunneling transitions which were not observed in optical 

measurements, discussed in chapter one.  

CHAPTER second deals with the thermal conductivity and specific heat of CN− 

doped alkali halide crystals by phonon spectroscopy. The questions posed by 

optical spectroscopy can satisfactorily be answered by thermal conductivity of 

KCl, KBr and NaCl and specific heat of KCl: CN measurements. Strong phonon 

scattering by tunneling and rotational states is observed. The scattering can be 

quantitatively described with a Lorenazian resonance cross- section.  

From fig. (2.4) we see that at low temperatures the CN− has no effect. The 

depression at 400K may be caused by scattering of the CN− both as a molecule 

and as a point defect. Similar high temperature depressions have been observed 
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in the thermal conductivity of crystals containing about the same concentration 

of monatomic defects. Assuming that the scattering is caused by rotational states 

of the CN− lying at the top of the potential barrier we calculate the barrier height 

to be 140 cm−1 from the position of the dip in the thermal conductivity, which is 

in agreement with the IR data. 

A comparison of the KCl and KBr data shows that such simple picture is 

inadequate. Instead one must calculate the field dependence of the energy levels, 

fig. (2.2) and it is conceivable that this would be different for the two host lattices. 

It appears that experiments of this kind can provide a better understanding of the 

lowest energy states of the molecules in solids.  

Fig. (2.5) gives the measured specific heat of KCl:CN. The graph shows 

dramatically the size of the anomaly relative to the size of the lattice specific heat, 

curve D. In order to analyse the anomaly the lattice specific heat must be 

subtracted. fig. (2.6). The theoretical curve I, calculated from equation (2.6) using 

the energies and degeneracies from equation (2.2), is the expected Schottky 

specific heat for the sample (B). Curves (B) & (C) exhibit the same shape below 

1.50K indicating that the level spacing is in reasonable agreement with the 

prediction but both curves are broader than the calculated curves. The broadening 

is attributed to the residual strain in the crystal.  

The experimental methods described above have resulted in a detailed picture of 

the rotational degrees of freedoms of the molecular impurity CN− in a variety of 

alkali halide host lattices. This picture is in excellent agreement with the model 

proposed by Pauling as refined by Devonshire. The potential barrier allows free 

motion above 600K in potassium salts and above 1500K in the rubidium salt. In 

sodium salts finally even at 3000K no free rotation is observed. At temperatures 

sufficiently below the ones mentioned the molecules perform librational motions, 

and at intermediate temperatures the motion can be described with the classical 



Conclusion 

84 

 

picture of hindered rotation. The libration levels are split due to tunneling, and 

specific heat measurement show that this tunnel splitting is in complete 

agreement with the theory. It was also found that the rotational and the tunneling 

states couple strongly to the phonon, whereas the librational states do not. The 

phonon- scattering cross- sections have a Lorentzian resonance form. The 

phonon- molecule interaction is assumed to be through stress coupling which has 

been shown to be large from stress-induced alignment experiments. In the KBr 

and KI host lattice an additional center of mass motions of the CN− ions appear 

likely. This type of motion had not been considered in the Pauling model. On the 

other hand a central instability should certainly be expected for cavities 

considerably larger than the impurity ion. 

CHAPTER three throws light on the shift of the intramolecular vibrational line 

of OH− impurity in alkali halide crystals. We have tried to explain the shift of the 

intramolecular vibrational absorption of the impurity in different alkali halide 

crystals on Buckingham's theory. This theory can very well account for the 

observed shift of the band center of OH− and OD− impurity in alkali halide 

matrices provided proper lattice distortion around the impurity is suitably 

considered. The amount of the lattice distortion needed to explain the observed 

shift agrees well with that obtained on the basis of Brauer method of calculating 

lattice distortion.  

When a polyatomic impurity molecule is substituted in a crystal matrix, the 

molecular interactions between the impurity and the host matrix ions modify the 

stretching or bending vibrational spectra of the impurity. A systematic study of 

these spectral features can yield much informations about the molecular as well 

as intramolecular forces.  

Table (3.3) gives the calculated shifts of the band-center and compares it with the 

experimentally observed results. The total shift has been expressed as the sum of 
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a red and a blue contribution, as already described. It can be seen from the table 

that the blue shift, corresponding to the repulsive interaction dominates over the 

red shift. This is in qualitative agreement with the experimental results. For a 

quantitative discussion, it may be mentioned that the shifts are to be evaluated 

under the handicap of no precise information about the parameters A, B and C in 

equations (3.10) and (3.12). Their values, therefore, are to be determined from 

the observed values of the shifts themselves. We use the shift data of LiF, NaF 

and NaCl matrices to obtain the parameters A,B and C by making use of the 

equatium (3.10). These are obtained as A = 167−304, B = −8.166910−16 and C 

= +5.0235910−8 units. The fifth column of the Table (3.3) represents the shifts 

obtained for these and a number of other matrices with above mentioned values 

of the parameter A, B and C. It can be seen that such a calculation does not explain 

the observed shifts in a consistent manner. The following causes can be attributed 

to this discrepancy:  

1. The polarizability values of the cations and anions become increasingly 

uncertain for small inter-ionic separation. As the parameters A, B and C 

have been obtained from the observed shifts in NaF, LiF and NaCl 

matrices, it is quite likely that the uncertain values of the polarizability in 

these cases might affect adversely the values of the parameters A, B and C 

thereby giving an incorrect shift in the other systems also.  

2. The localized lattice vibrations of the surrounding lattice points can also 

affect the position of the band-center. This effect has been found to be 

important in understanding the shift of the librational and tunneling  Levels 

of these impurity matrix- systems. When on impurity is added to the 

cyrstal, the near neighbours atoms move to the new equilibrium positions, 

depending upon the host crystal matrix and the nature ans size of the 

impurity. Such displacements have been found to of much improtance in 

understanding the thermal conductivity measurements and the quadrupolar 
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broadening of the NMR lines. More recently de Jong has made the use of 

elestic relaxation of lattice around impurity ions susbstituted in KI matrix, 

in order to explain the frequency of the impurity indueced gap modes. It is 

quite likely that these same elastic displacements of the nearest neighbour 

atoms are responsible for the difference in the calculated and the observed 

shift of the band- center.  

For the (i) it can be said that the polarizability values affect only the red 

contribution of the shift. As can be seen from the table (3.3), this is just one 

percent of the total shift and hence any error in the polarizability values wll not 

affect the results much. For the item (ii), it has been observed that this effect is 

more important for the tunneling level than for the librational level. It has been 

well realised, that larger the frequency of the motional state of the impurity, the 

smaller is the effect of the localized vitrations on it. The shift of the band-center 

is, therefore, not expected to be much affected by coupling with the localized 

lattice vibrations.  

It is the third item, therefore, which is added to be the chief cause of the present 

disagreement between the calculated and the observed shifts. To evaluate this 

effect one should first calculate theoretically the isotropic displacement of the 

nearest neighbours of the impurity and then work out its effect on the position of 

the band-center.  However, we do it in the reverse way. Table (3.4) gives the value 

of the displacement of the nearest neighbours needed to fit the calculated shifts 

to the experimental values. 

We have taken the OH− ion as approximately spherical and equivalent to the 

fluoride ion which is isoelectronic to it. Thus, we have made use of the repulsive 

potential parameters of alkali fluorides for OH− ions trapped in the alkali halide 

matrices. Recently Ward and Timusk have presented the experimented results of 

the impurity induced far-infrared absorption for KBr−OH− and KBr−F− systems. 
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Both the systems have resonances at 37cm−1 and in general appearances the 

spectra of these systems are quite similar, as expected from a nearly similar 

electronic structure of these impurities. Also in their theoretical calculations, 

Ward and Timusk have used the same force constant for OH− and F− impurities. 

The lattice distortions around the impurity have also been calculated following 

the well known method of Brauer and Caldwell and Klein, separately. The results 

of lattice distortion obtained experimentally by other workers have also been 

given in the table (3.4) along with those obtained from the Brauer and Caldwell 

and Klein's methods. It can be seen that the lattice distortion needed to explain 

the observed shift, agree well with those calculated from the different models and 

observed experimentally.  

CHAPTER -IV determines the of-center direction of impurities (Li+ & Ag+) in 

alkali halide crystals. The possible of-center displacement of impurity's centre of 

mass from the normal lattice site can be obtained by determining the minimum 

energy configuration of the combined impurity-matrix system. The possible of-

center displacement of the impurity's center of mass from the normal lattice site 

can be obtained by determining the minimum energy configuration of the 

combined impurity-matrix system. For rigorous determination of the of-center 

displacement, one requires to calculate the variation of the energy of the system 

as a function of the impurity's displacement.  

The present calculation of the displaced position of the impurity center of mass 

(CM) is based on the multipole expansion method of the intermolecular 

interaction. The idea of possible of-center, displacement of the CM of the dipolar 

impurity in alkali halide matrices was first suggested by Seward and 

Nrayanamurti. 

The equilibrium position of the impurity in the matrix cavity is described by the 

minimum energy configuration of the impurity matrix system. The interaction 
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energy depends upon the distribution of charges in the dipolar impurity and that 

in the ions of the host matrix. Consequently, the point of the impurity that rests 

at the normal lattice site in the minimum energy configuration will depend upon 

the distribution of charge and not upon the distribution of masses in the impurity. 

We call this point the center of interaction (CI), because it is this point at which 

the effective crystalline field interaction acts. Essentially, the CI need not 

coincide with the CM, because the latter is governed by the distribution of masses 

in the impurity. We assume that the angular anisotropy of interaction is also 

minimum about the center of interaction. So far as the properties of this CI are 

concerned, the following points may be mentioned: 

1. Where there is a symmetric charge distribution in the molecule, the CI can 

be taken as located at the center of symmetry.  

2. For an asymmetric charge distribution, CI is the point about which the 

angular dependence of the intermolecular interaction is minimum. The 

relative importance of various types of these interactions (like dispersion, 

induction, exchange and multipole interaction), which are not centered 

necessarily at the same point, is determined by the intermolecular distances 

and the environs of the impurity.  

The CI of asymmetric molecule is, therefore, not only a molecular constant but 

also depends upon the environment of the impurity. The position of the CI may 

also slightly depend upon the experimental conditions, such as temperature, 

pressure and state of aggregation etc. These latter small effects, however, will not 

be considered here. In fig. (4.1) we report calculation of the ratio K/K' as a 

function of the off-centered displacement parameter 'a'. In the same fig. we have 

marked the regions for the <111> and the <110> orientations based on the 

calculation of Mitra et.al. For the RbCl-Ag+ system, it can be seen (4.1) that if the 

of-center position exceeds the value of 0.82A0, <110> direction of displacement 
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becomes more probable. The experimentally observed value of this parameter for 

RbCl-Ag+ system is 0.83 .08A0 establishing the fact that probably it is an 

example of a boarder-line case. This can explain the reason of the controversy 

between the two authors and our calculations of K/K' for highly ordered crystal 

matrices. Dislocations and other imperfects near the impurity may stabilize either 

of the orientations. Hence the reason of the controversy may be attached to the 

use of improperly grown crystals and to the fact that this is an example of boarder-

line case between <111> and <110> orientations.  

Large amount of internal strain or internal electric fields are always present in a 

normal crystal. These have also been found to be responsible for the large line 

widths observed in the paraelectric resonance experiments and for the form of the 

specific heat anomaly of the paraelectrics. More recently Timme et.al. have done 

paraelectric spectroscopy experiments on KCl−Li+ system with different crystal 

orientations. Their results have been found to be in serious disagreement with the 

simple <111> model. They have observed the existence of two lines for certain 

crystal orientations, where only one is expected from the <111> model. 

Moreover, for certain other crystal orientations, they observe only one line 

whereas the <111> model predicts two lines to be observed. They explained the 

anomalous spectral features by incorporating the large internal strains in the 

crystal matrix around the impurity. Very recently Kaphan and Luty have carried 

out a detailed study of the static and dynamic para electric behaviour of Ag+ ion 

in RbCl and RbBr matrices, using the electrodichroism of Ag+ ultraviolet band. 

The static electro-optical measurements reveal a <110> orientation with thte 

dipole moment value of 0.78 A0 for RbCl−Ag+ system.   

The dynamical, time dependent electrodichroism measurements show the 

presence of two different relaxation processes for this system. This behaviour 

could be understood only in terms of a strong Eg distortion of the lattice. The off-
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centered displacement value of 0.78A0, though lies in <111> region, is quite near 

to the border line, fig. (4.1).  

In order to present the exact picture, perhaps, also the Eg distortion term is needed 

to be considered in the modified Devonshire potential equation (4.2). Our results 

of the RbCl−Ag+ system can also be compared with those of the experimental and 

theoretical studies of certain other workers and Dreybrodt and Fussgaenger have 

observed the temperature dependence of the dipole strength of the (4a)10→ (4a)9 

5s electronic transition of the Ag+ ion in the RbCl matrix. They also conclude 

that Ag+ ion sits in an off-centered  position in the RbCl matrix. Their subsequent 

calculations indicate that the impurity is off-centered by about 0.25A0 in the 

<111> crystallographic direction. From fig. (4.1) it can be seen that our 

calculations also present a <111> off-centered direction for a = 0.25A0. A more 

recent calculation of Wilson et.al. gives the off-centered displacement position 

.54A0 in the <111> direction. This is also consistent with our calculations 

(fig.4.1). 

For the sake of completeness, we are also presenting the calculations for KCl−Li+ 

and NaCl−Li+ systems and determining the off-centered directions in these cases 

as well. For the KCl- Li+ Fig. (4.1) shows that for a value of 'a' greater than 

1.08A0, a <111> off-centered position is plausible. The experimental value of the 

parameter 'a' is 1.2A0, which predicts a <111> direction of displacement. This is 

in agreement with many experimental results. For the NaCl−Li+ system, a <110> 

direction can be predicted only if 'a' becomes greater than 1.12A0. Such a high 

value of displacement parameter 'a' in a NaCl matrix (Lattice constant = 2.81A0) 

is highly improbable. Hence, in this system also a <111> direction of the off-

center displacement is expected (if it is an off-center system at all). This is also 

in agreement with the results of Wilson et.al.  
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