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Chapter 1 

Chapter 1: General Introduction 

1.1 Introduction: 

The study of electromagnetic wave propagation through conductors and semiconductor 

plasma is steadily increasing. It has a great diagnostic value and in the optical wavelength 

the wave interaction with the semiconductor plasma provides spectroscopes information. It 

is well known now that the solid state materials normally have a dense cloud of free 

electrons and the properties of this electron gas or electron ensemble or electron plasma are 

analogous to gaseous plasma with some characteristic differences. The electromagnetic 

wave propagation features in the solid state plasma and gaseous plasma also have close 

similarities. The electromagnetic wave propagating through good conductors interact 

strongly with the electron plasma and are excessively attenuated. Therefore, good 

conductors are generally referred to as dissipative or lossy materials. The sold state plasma 

supports many wave modes and these wave modes are known as excision. While discussing 

electromagnetic wave propagation through conductors, semiconductor and insulators one 

needs to develop certain macroscopic and microscopic models. It is well known that even 

at room temperature the conductors and semiconductor are characterized by a large number 

of free electrons. The electrons ensemble in conductors and electron-hole ensemble in 

semiconductors respond significantly to electromagnetic wave propagation. Thus for the 

sake of electromagnetic wave response and propagation, the materials are characterized in 

the following way: 

Conductors  = Immobile lattice ions + mobile and free    

      electron gas.  

Semiconductors  = Immobile lattice ions + mobile and free    

      electron and holes.  
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Insulators or Non -  = Immobile lattice atoms + no electron gas    

       conductors. 

The ensemble of free electron, in this classification is known as electron gas or hole gas. 

The electron gas and hole gas mainly affect the electromagnetic wave propagation and 

extract maximum energy from the interacting or propagating waves.  

The study of the propagation of electromagnetic wave through bounded magneto-plasma 

has become- increasingly important in recent years because of its application in areas like 

plasma diagnostic, beam plasma interaction, microwave circuitry etc. They have contributed 

recently in a great measure to progress in many fields of basic research and technological 

applications such as MHD power generation, fusion research, intense radiation sources, 

chemical reactions, material research, microelectronics etc. While the literature on the 

propagation of electromagnetic wave through unbounded magneto-plasma is extensive, the 

subject of bounded magneto-plasma has not received significant attention. Crawford (1971) 

presented somewhat a gloomy picture regarding the future of these devices and showed still 

a dearth of serious commercial plasma competitors to existing vacuum tube and solid state 

devices unless a major breakthrough is made in production of a simple quiescent plasma 

source. Plasma medium had drawn very much attention so given status of fourth state of 

matter i.e. plasma state in addition to solid, liquid and gaseous states. Ninety-nine percent 

of matter of universe exists in plasma state. It is characterized by a high mean particle energy 

in comparison to other states. Most important natural source of plasma around earth extends 

from 90 thousand of kilometers known as regions termed as ionosphere and magnetosphere. 

The energy available on earth from sun is due to existence of matter there in plasma state. 

The lightening which accompanies thunder storms is a vivid example of plasma. Solar 

flares, solar prominences and sun spots are the other spectacular plasma phenomena. In fact, 

all stars are themselves largely in the plasma state. 

In most cases the readily accessible range of plasma parameters for the laboratory systems 

places the operation in the microwave band of the frequency spectrum. Numerically, plasma 

frequency fp  900n1/2 Hz (n in electrons per cm3) and the gyro frequency fb 28B (B in 

Gauss) so that readily attainable electron densities (~1011 per cm3) and magnetic field (~103 

Gauss) place these quantities in the microwave band.  
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The plasma devices such as phase shifters, attenuators, isolators, couplers hold out promise 

for the future development. The use of beam plasma interaction in the millimeter wave 

region has been demonstrated. Non-linear plasma properties have been tried in devices like 

harmonic generators, parametric amplifiers etc. But unfortunately none of these devices are 

able to compete at present with the established existing devices. However, an attempt is 

made in this dissertation to understand the interaction of electromagnetic waves with the 

plasma in the bounded system as a step towards exploring the feasibility of devices 

employing plasma as a working medium. Plasma and beams have an important role both in 

basic research and in technological applications. The interaction between plasmas and 

electromagnetic waves is one of the fundamental problems of plasma physics that has 

received considerable attention. The subject of microwave plasma interaction retains 

considerable interest for both the plasma heating as well as for the production of moderately 

high density (overdense) plasmas in the laboratory. Microwave discharges are also used for 

preionization in tokamaks, prior to ohmic heating of the plasma. In recent times, microwave 

produced plasmas have also begun to find application in the processing of semiconductor 

materials for devices fabrication. High density plasma production using different slow wave 

structures which facilitates the coupling of microwave energy to plasma electrons is in 

progress. The term "plasma' was first used to describe a collection of charged particles by 

Tonks and Longmuir in 1929 in their studies of oscillations in electric discharge. The term 

"fourth state of matter" often used to describe the plasma state, was coined by W. crooks in 

1879 to describe the ionized medium created in gas discharge.  Revised interest in plasma 

physics in united states began in 1952 with the attempts of a programme, known as project 

Sherwood (1958) to develop a controlled the monuclear fusion reactor. The presence of a 

controlled amount of background plasma inside microwave tubes can possibly lead to 

improvement in their characteristics beyond what is available in evacuated devices 

[Nusinovich et.al. (1998)]. In particular, recent results clearly demonstrated that the 

presence of plasma can significantly increase the band width, efficiency and power handling 

capabilities of non-relativistic microwave oscillators and amplifiers and allow operation 

without a guiding magnetic field. Plasma loaded microwave devices have the potential to 

advance the technological and scientific base of microwave tubes, and also to have an 

impact on commercial and industrial applications through the development of commercially 

variable technologies.  
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One of the earliest and most extensive investigations in this direction is the propagation of 

radio waves in the ionosphere. The mathematical formulation in that context is the magneto-

ionic theory developed by Appleton (1930), Hartree (1931) and others and is discussed in 

detail by Ratclife (1959, 1972), Budden (1961) and Ginzburg (1964). The resonance and 

cut-off frequencies of an uniform plasma for different separations between emitting and 

receiving probes are measured by Mishra and Sahu (1990). Under this experimental 

condition plasma diagnostic such as electron density, temperature and collision frequency 

was performed. Sinha et.al. (1988) determined arc plasma parameters of Cu arc plasma 

using a moving Langmuir probe. Narayan et.al. (1990) show that use of moving double 

probe method reveals a parametric multiple structure showing variation of ion densities. 

The propagation of electromagnetic waves in unbounded stationary magneto plasma is 

considered by Haskell and Papa (1965), Holt and Haskell (1965), Strix (1964), Sturrock 

(1967) and many others. Ganapol et.al. (1989) evaluated the electric field generated by 

longitudinal plasma waves. The relativistic effect in plasma was considered by Chawla and 

Unz 91969, 1971). Articolo (1969) derived a general expression for the dielectric tensor for 

warm drifting non-relativistically and anisotropic unbounded plasma including the effect of 

velocity dependent collisions in the presence of the external magnetic field.  

In order to produce plasma, it is necessary to free electrons that are normally bound in atoms. 

When the energy equal to ionization energy of any element is added, ionization takes place 

with the creation of an electron and ion. Ordinarily energy comes from collision events of 

one sort or another. On the addition of ionization energy to a fraction of atoms of a neutral 

gas, an ionized gas is formed. If sufficient energy is added, the gas may be completely 

ionized.  

There are two ways usually to describe plasma properties. The first one is the microscopic 

approach based on the distribution function of positively and negatively charged particles. 

This description of plasma is the most rigorous one. Hence a large number of phenomena 

occurring in plasma is considered from a macroscopic point of view and is described in 

terms of average quantities like densities, pressure, temperature etc. This is equivalent to 

use fluid theory. Electrical property of plasma is described either in terms of dielectric 

constant or conductivity. In the dielectric model, electrons are treated as bound charges each 

being associated with a positives ion to form an electrical dipole.  
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The motion of electrons under influence of an oscillating electric field can be regarded as 

giving rise to a polarization current. In the conductor the electrons are considered as free 

charges whose response to applied fields is opposed by interactions with the other particles. 

The electrons moving under influence of oscillating electric field are considered to give rise 

to conduction current. However, the above two descriptions are equivalent. In general 

plasma dielectric constant also called relative permittivity and conductivity both are 

complex having resistive and reactive components. In case of a plasma medium being 

anisotropic, these parameters become tensors. The dependence of dielectric constant on 

frequency makes plasma quite attractive for many device applications.  

Although the plasma is first of all a gas and nearly "ideal" as well, it has many properties in 

common with a conducting fluid exhibiting coherent motions i.e. waves, which reveal a 

great deal about the state and nature of plasma system. If all the particles in a small volume 

element feel essentially the same forces, they will move in the same way, even though they 

are not coupled to their near neighbours by collisions.  

If a group of particles have widely varying thermal speeds, then of course, they will not tend 

to remain together as a fluid element, the results of fluid element, the results of fluid 

treatment for a plasma are usually referred to as waves in a cold plasma. The plasma state 

is enormously rich in wave phenomena, and a variety of classification schemes have been 

devised [Stix (1964)]. Only a broad categorization of plasma waves is made according to 

the state of the plasma that supports the waves because the normal modes of a plasma are 

so strongly influenced by the plasma and field configuration.  

Only small amplitude waves are discussed here because the field equations can then be 

linearized in the wave quantities. Wave phenomenon in plasma is discussed on the basis of 

the orbit theory. Orbit theory gives insight into the physical phenomena that determine 

plasma behavior provided that particle interactions can be considered as playing only a 

minor role. The major limitation of the orbit theory approach to a study of wave propagation 

in plasmas is that it cannot adequately take into account the effect of the random thermal 

motion of the particles and antiparticles collisions. In order to include these effects, it is 

necessary to introduce the distribution function f(s) for each of the s constituents in the 

plasma medium.  
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This distribution function is defined as the density of points in the six-dimensional phase 

space made up of these components of the position of particles (configuration space) and 

three components of the velocity of particles (velocity space).  

If dr is a small volume element in configuration space and dc is a small volume element in 

velocity space, then f(s) dr(s) dc(s) is the number of particles of species which are located in 

the volume element dr and have velocities in the velocity range dc. 

The number density n(s) of particles of species s is found by integrating the velocity 

distribution function over all velocities  

  n(s) = 
)()( ss dcf       (1.1) 

If (s) (vi)
(s) is some function of particle's velocity then the average value of  (s) denoted by 

<(s)> is given by  

  = )()()(

)(

)( 1 sss

s

s dcf
n

      (1.2) 

If the velocity distribution function is known then all of the average, or microscopic 

properties of the gas can be calculated. To do this, it is noted that f(s) satisfies the Boltzmann 

equation  
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Where ijk is the third order alternating unit tensor. The right hand side of the equation 

represents the rate of change of f(s) due to collisions with other particles. The first term on 

the left hand side, f(s)/t is the local variation of the distribution function. The second term 

i

ss

i xfV  /)()(
 (s) is the variation of the distribution function from diffusion.  

The third term is the variation of distribution function due to external forces acting on the 

molecules. Solution of Boltzmann equation yields information about waves in plasmas.  
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Some information regarding waves in plasma can be obtained without actually solving 

Boltzmann equation. Consider a plasma which consists of electrons and one species of 

singly ionized positive ions. The collision term on the right hand side of Boltzmann equation 

is neglected so that the only interaction between   electrons and ions is due to the space 

charge fields. If the Boltzmann equation is multiplied by 1, ( )2

iVm   and  ( ) ji VVm  and 

the resulting equations are integrated over all velocities, the three sets of moment equations 

[Holt and Haskell (1965)] are obtained. The first set is the continuity equations for electrons 

and ions and contain the unknowns n and  . 

iV  The second set is the momentum 

equation and contains an additional unknown quantity, the pressure tensor 


ij  given by  

 ( )( )−−= 





jjiiij VVVVmn     (1.4) 

The third set of moment equation describe the time variation of the pressure tensor and 


ij  

and contains an additional term 


ijkQ , the heat flux tensor. There are always more unknowns 

then there are equations and it is necessary to truncate the set of moment equations. If the 

wave motion is adiabatic i.e. if the phase velocity of the wave is much larger than the 

perturbed thermal velocity of the charged particles, truncation can be achieved by neglecting 

the heat flux tensor. Then, the first three moment equations together with the electro-

dynamic equations can be linearized and plane wave solutions can be obtained for the 

perturbed quantities. The results differ from those obtained from orbit theory in that they 

include first order temperature terms in the dispersion equations for both transverse and 

longitudinal waves. The effect is small for transverse waves except near resonance. 

However, for longitudinal waves, the effects of finite temperatures are important because 

they provide a mechanism for the propagation of longitudinal oscillations [Crawford 

(1968)]. The most general dispersion relation using the moment equations is obtained [Holt 

and Haskell, (1965)]. The moment equations thus obtained do not contain any information 

concerning the velocity distribution of the plasma particles because the Boltzmann equation 

has been averaged over velocity space. Thus in order to describe phenomena which depend 

upon the finite velocity spread of the particles, it is necessary to solve the Boltzmann 

equation for the various species. Methods for solving Boltzmann equation can be divided 
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into two major categories. The first is a perturbation technique by means of which 

Boltzmann equation is linearized. This method has been used by many authors [Sitz, (1964); 

Bernstein, (1958) and Drummond (1958)] to describe the propagation of small amplitude 

waves in a collisionless plasma. The dispersion curves (Bernstein mode) thus obtained, 

coincide in the limit of long wavelengths of small wave number with those obtained from 

moment equations. As the wavelength decreases, the dispersion curves change drastically. 

The group velocity and phase velocity can have opposite signs. Resonances known as 

Bernstein modes appear at each harmonic of the cyclotron frequency approaching the 

harmonic frequencies from the high frequency side. These Bernstein modes are 

experimentally demonstrated by a number of workers [Landauer, (1991); Crawfor, (1968); 

Hiroe, (1973)].  

The second major method for solving the Boltzmann equation lies somewhere between the 

perturbation method and moment equations. In this method, the distribution function is 

expanded in series of some orthogonal functions where the coefficients of the expansion are 

related to macroscopic quantities of the plasma. Several authors [Margenau. (1946), Allis 

et.al. (1963), Johnston, (1962)] have used a spherical harmonic expansion. The advantage 

of this method over the perturbation method is its ability to include the effects of close 

collisions with velocity dependent collision frequencies.  

It was pointed out that one of the most attractive properties of the plasma is its frequency 

dependent dielectric constant. Based on this, a wide variety of device applications have been 

suggested. Most of these devices employing laboratory plasma bounded systems can be 

analysed only when the behaviour of electromagnetic fields is known at the boundary 

between the plasma and the walls of the container. Many important problems of both static 

and time varying fields have one medium directly adjacent to another.  

The differential relations for each homogeneous medium relating space derivatives of the 

field to sources at the point and to properties of the medium, may be applied separately to 

each region. The question is that of joining or matching the solutions across the surface of 

discontinuity. The boundary conditions will be satisfied by time dependent electromagnetic 

field vectors  DEB ,, and  H  at the interface between two different media. For the correct 

description of the bounded plasma system it is necessary to know the behaviour of the 
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electromagnetic fields at the boundary between the plasma and the conductor. The 

conditions to be satisfied by the field vectors at the interface separating a dielectric and a 

conductor are well known [Ramo et.al. (1970)]. Cold plasma whether uniform or non-

uniform can be described as a dielectric medium obeying Maxwell's equations. Therefore, 

the boundary conditions at the interface between the cold plasma and a conductor are the 

same as the boundary conditions at the interface between the conductor and the dielectric 

since the plasma behaves as apolarizable medium with a strongly frequency dependent 

tensorial permittivity. These conditions for any dielectric can be described as:  

a. Normal components of magnetic induction is continuous across the boundary.  

b. Tangential components of electric field intensity is continuous across the interface.  

c. Normal components of electric displacement is not continuous across the surface and 

changes by an amount equal to the free surface density at the interface.  

d. The tangential components of magnetic field intersity is continuous across the surface 

separating the two dielectrics.  

In case of boundary being perfectly conducting medium the tangential components of 

electrical field is zero at the boundary. Also the normal component of magnetic field 

vanishes at the boundary.  

When the plasma is hot the problem is more involved. When a plasma is in contact with a 

solid surface, a sheath with a thickness of the order of several Debye radii is produced. Mos 

of the electrons are reflected by the sheath back into the plasma. A reasonable assumption 

is the the wall is perfectly reflecting [Vandepnplas, (1968)]. If one uses the perturbed scalar 

pressure, the additional boundary condition is that the mean perturbed velocity 

perpendicular to the wall is zero. On the other hand, if the perturbed pressure is a tensor 

then the off diagonal terms of the pressure tensor are also set equal to zero at the walls. If 

the wall is metalic it is an equapotential surface and a conduction towards it is possible, a 

sheath still exists and the properties of the sheath depend upon the potential of the wall with 

respect to the potential of the plasma outside the sheath. In some cases, it seems therefore 

that the assumption of a practically zero perturbed conduction current at the metallic wall 

might also be quite satisfactory. The sheath region close to a metal surface plays an essential 

role in the resonance properties of plasma system having such a metal surface.  
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The interest in bounded plasmas started ever since Tonks and Longmuir discovered high 

frequency electron oscillations in 1929. These oscillations have subsequently been 

investigated in considerable detail by Tonks and Longmuir (1929 a,b). Bohm and Gross 

(1949), Van Kampen (1957) and others. The closely related problem of space charge waves 

in electron beams have been studied by Hahn (1939) Ramo (1939), Birdsall and Whinnery 

(1953), Trivelpiece and Gould (1959). Bevc and Everhart (1962) and Trivelpiece (1967). 

Most of the analysis of waves in electron beams and plasmas in the presence of external 

magnetic field have been devoted mainly to the various modes of propagation. The 

electromagnetic wave propagation through conductors is affected by the charged particle 

system present in conductors and semiconductor plasma. Two approaches of modelling of 

solid state plasma are generally used: 

• Electron gas Model 

• Fermi Liquid Model 

The electron gas in conductors is generally of high density. Therefore, the weak- coupling 

between charged particles in solid state plasma exists. The criterion for weak coupling is 

experessed in terms of characteristic lengths. However, in semi-metals and heavily doped 

degenerate semi- conductors the electron density is comparatively low as compared to 

metals and weak coupling generally holds good. The Fermi-liquid model was developed by 

Landau (1956) and later extended by Silin (1958) to account for the properties of metals. 

Fermi-liquid parameters have been developed which specify the electromagnetic response 

of metals rather exactly.  

1.2 Characteristics and Parameters of Solid State Plasma: 

1.2.1 Effective Mass of Charge Carriers: 

The nature and distribution function of quasi-particles differs basically between gaseous 

plasma and the solid state. Certain wave mode excitations in solid state plasma with well-

defined energy besides electrons and holes are known as quasi-particles namely, plasmon, 

helicons, phonons, polarons and magnons. Electrons and holes obey Fermi-Dirac statistics 

and plasmons, helicons and phonons obey Bose-Einstein statistics.  
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1.2.2 Screening length in Solid State Plasma: 

The concept of Debye sheilding is good for plasmas obeying Maxwell- Boltzmann 

statistical distribution and characterizes ad distance to whicdh an external electrostatic field 

with penetrate in the plasma before being counter balanced by induced electric fields due to 

charge polarization of the medium. The concept of screening in degenerate and non-

equilibrium plasmas changes. The natural generalization of Debye shielding distance in 

solid state plasma is obtained by replacing 3/2 KT by Fermi energy. This screening 

parameter is known as Fermi-Thomas length.  

1.2.3 Plasma Oscillations: 

The solid state plasmas also conform to harmonic oscillator and the plasma frequency in 

solid state plasmas is given by  = */22 mnep  . This important frequency separates the 

low and high frequency response of the plasma. The quantum of plasma oscillation energy 

known as plasmons for most metals are of the order 10eV. This energy is far above the 

thermal energy, therefore, plasma waves are not normally excited in metals unless special 

conditions are met for their excitation. Under suitable conditions more than one mode of 

oscillations or waves are excited. Their degree of excitation and their predominance vary 

from one conductor to another. These waves in conductors are known as excitons.  

1.2.4 Cyclotron Frequency or Gyrofrequency: 

With thet exception of effective mass, the cyclotron frequency in case of solid state plasma 

is same as in the case of gaseous plasma. The cologron frequency is used as an important 

reference frequency for discussing electromagnetic wave propagation in solid state plasma.  

1.2.5 Relaxation Time: 

Gaseous plasma is characterized by binary collisions. In the case of solid state plasma, the 

current carriers invariably scatter from lattice defects, disorders and imperfections. The 

effect of this scattering process is particularly adverse when electromagnetic wave in the 

vicinity of cyclotron frequency are propagating through the solid state plasma.  
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The wave having frequency equal to cyclotron frequency propagates if the field vectors of 

the propagating electromagnetic wave and gyrating electrons make several gyrations before 

scattering of electrons which is analogous to the collision process in gaseous plasma which 

is governed by the inequality t >>1 where  is cyclotron frequency and  is collision time 

or relaxation time. Inverse of this time gives the analogue of binary collision frequency in 

gaseous plasma.  

1.2.6 Local and Non-Local Regimes: 

The comparison of wave number and the inverse of mean free path classifies the solid state 

plasma into two clear cut regimes:  

• Local regime  kl << 1 

   and 

• Non-local regime  kl>> 1 

The electron plasma behaves differently under these approximations and the propagating 

electromagnetic waves undergo characteristic changes. These regimes have certain 

implications in the propagation of electromagnetic waves in solid state plasma.  

The interaction of a large number of electrons with self-created or externally imposed 

electromagnetic field is governed, in general, by a quantum statistical or quantum 

mechanical descriptions. In the long wavelength limit, the quantum mechanical description 

goes over to the classical description.  

Therefore, for discussion of long wavelength propagation, the use of hydrodynamical model 

of plasma is quite valid and is extensively used. Various simplifying assumptions are made 

while using the hydrodynamic fluid model for evaluating the response of solid state plasma 

to external electromagnetic field perturbation:  

a. The concept of effective mass of charge carriers in solid state plasma enables us to treat 

them as free electrons and ions in vaccum. 
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b. The energy and momentum changes per particle are small, so that the band to band 

transitions are generally ignored.  

c. Interactions of electrons and holes with lattice vibrations and imperfections are 

accounted for by introducing constant phenomenological collision frequency which is 

inverse of the relaxation time of the solid state plasma.  

d. The effect of distribution of interacting particles in velocity or momentum spaces is 

ignored.  

e. The wavelength of external disturbance is much longer than the Debye length, so that 

one can treat the electron or the hole to be streaming hydrodynamically.  

1.3 Macroscopic Equations of Solid State Plasma: 

The general plasma approximations for gaseous plasma also hold good in the case of solid 

state plasma. The Maxwell's equations in the presence of charges and currents in the solid 

state plasma are written as- 

 .D =          

 (1.5) 

 . B = 0         (1.6) 

   E = 
t

B




−  

 and 

 B = J +  
t

D




       (1.7) 

here  and  appear in place of 0 and 0 used for free- space. The source terms are charge 

density and current density in the solid state plasma and are written as  

 (r,) =  −
i

irre )(  i = 1, 2, 3..............    (1.8) 
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 and 

 J (r,t) = −
i

ii rrev )(  i = 1, 2, 3..............    (1.9) 

Where Vi is the velocity and ri is the position of ith charge carrier denoting the movement 

from the initial position denoted by r.  

The statistical description of solid state plasma, assumes the existence of a velocity 

distribution function f (r,v,t).  

The behaviour of the velocity distribution function is given by the Boltzmann transport 

equation.  

The average number density and the average velocity of electrons are defined by the zeroeth 

and first moment of the distribution function with respect to velocity  

  ( ) ( )= rdtvrftrn v

3,,,      (1.10) 

  
( )

( ) rdtvrvf
trn

V v

3,,
,

1
=      (1.11) 

The Maxwell's equations are supplemented by certain hydrodynamic equations such as 

momentum and continuity equations which hold good for a conducting fluid. 

The electron plasma in solids conforms well with these equations and forms a basis for use 

of the hydrodynamic fluid model for studying some of the problems in solid state plasma.  

The electromagnetic response of electron gas in solid state plasma characterises the 

properties of conductors and semiconducors. The fluid model is generally used to obtain the 

electrical conductivity of electron gas.  

Except for the change of electronic rest mass to effective mass, the derivation of 

conductivity of conductors arens semiconductors are almost similar to that derived for 

gaseous plasma.  
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1.4 Longitudinal Plasma Oscillations in Solid State Plasma: 

The electron gas is solids behaves exactly in the same way as in the gaseous plasma. For a 

cold and collisioniless electron gas which is free from diffusion, the dispersion eqaution for 

longitudinal oscillations is obtained by setting 33 element of dielectric tensor to be equal 

to zero. The Plasma oscillations are localized and non-radiative at signal frequency equal to 

plasma frequency. When realistic solid state plasma is taken account, we find that the 

dispersion equation implies the existence of two longitudinal modes for a given signal 

frequency. These wave modes are known as fast and slow wave modes. In the presence of 

phenomenological collisions, the effective plasma frequency in the solid state plasma is 

reduced to ( ) 2/122

. 4/1 ppeffp  −= . The dispersion equations appropriate to different 

forms of solid state plasma can be obtained from the general dispersion equation.  

1.5 Helicon Waves in Solid State Plasma: 

The single component electron plasma is capable of sustaining right- handed circularly 

polarized waves for which the electric field vector is written as ERH=Ex+jEy. The electron 

gyration in the presence of a static magnetic field has the same direction as the rotation of 

ERH. Accordingly the electric field vector ELH=Ex−jEy rotates in the opposite direction to the 

direction of the gyrating electron. The presence of such waves in metal plasma was first 

discovered by Konstantinov and Perel (1060) and in semiconductor plasma by Algrain 

(1960).  

These waves are analogous to whistler mode waves first discovered by Storey (1953) in the 

earth's magnetosphere and are known as Helicon waves in solid state plasma. The dispersion 

equation for Helicon wave propagation can be obtained from the self- consistent solution of 

Maxwell's equation and the equation of motion of electrons. At low freqencies  <<, p 

and . The magnetic field is large such that e/   1. In case of longitudinal propagation  

= 0, the helicon waves (extra-ordinary mode) propagate along the static magnetic field with 

very low damping. Since p is large and  is small, the phase velocity of helicon wave 

becomes much smaller and interacts with the ambient electron gas and gives rise to growing 

or decaying Helicon wavesl  
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In case  of general direction of propagation [Singh and Pandey, (1975)] which is rather 

important   0. the field component Ez appears along the direction of wave propagation 

which causes additional damping well known as Landau damping of helicon waves. The 

helicon wave propagation through solid state plasma changes significantly with changing 

wave and plasma parameters. Therefore, the helicon wave propagation is used as a 

diagnostic tool for study of electron gas in solid state plasma.  

1.6 Waves in Two Component Plasma- Alfven Waves: 

We find that the solid state plasma has close analogy with the gaseous plasma. The electron 

and ion system in gaseous plasma supports Alfven waves [Alfven, (1942)]. The electrons 

and holes system in solid state plasma also supports Alfven waves. In solid state plasma, 

we have ne =nh = n and  <<p, c. The Alfven waves are strongly damped unlike Helicon 

waves. The solution of dispersion equation yields two solutions, one corresponds to 

extraordinary Alfven wave which is a slow wave, and another solution corresponds to 

ordinary wave which is a fast wave.  

The slow Alfven waves are analogous to helicon wave. We find that the slow Alfven wave 

propagates in different directions with different velocities. The fast Alfven wave however, 

has no directional dependence. The propagation properties of Alfven waves have been used 

as one of the diagnostic techniques for studying the nature of two components solid state 

plasma in semiconductors and semi-metals. In the local regime characterized by kl <<1, the 

cyclotron resonance take place  = c at which the helicon waves is strongly absorbed. 

However, in the non-local regime the electrons drift along the static magnetic field and the 

resonance frequency is drastically decreased.  

The maximum velocity of electron in a metal plasma is VF, the Fermi velocity. Thus we 

find that the resonance in solid state plasma occurs at a reduced frequency  = (c −kVF) 

and the interacting wave is strongly damped. Study of these resoance provide diagnostic 

information about velocity distribution function of charged particles in metals and 

semiconductors. Some of these details are essential for evaluating the performance and 

response of metals and semiconducting materials as circuit elements subjects to various 

ranges of electromagnetic operations.  
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The thesis consists of six chapters. The first chapter serves as an introduction to the thesis. 

A short account is given of the basic concepts necessary to understand the behaviour of 

unbound and bounded gaseous and solid state plasmas. Basic features of the plasma 

existence, conducting waveguide, boundary conditions at the conducting surface, possible 

propagating wave modes and possible instabilities in solid state plasma are outlind. The 

chapter begins with a brief survey of existing literature on the unbounded gaseous and solid 

state plasma. A general solution for the propagating modes in waveguides completely or 

partially filled with moving inhomogeneous warm plasma in the presence of finite magnetic 

field has not yet been developed. Only ccertain simplified cases have been analysed in the 

literature. Bevc and Everhart (1962) classified modes of propagation in case of waveguide 

completely or partially filled with a stationary plasma column or a electron beam drifting 

with a uniform velocity and collimated with a magnetic field of finite magnitude. Formulae 

for cutoff frequencies as functions of the cyclotron frequency as well as some representative 

Brilllouin diagrams are given. Effect of anistropic plasma in a waveguide is studied by 

Samaddar (1962). Franklin and Oldfield (1969) have studied the properties of cylindrical 

waveguides filled with cold plasma in the presence of finite magnetic field in the direction 

of propagation including the effect of collisions. Oldfield and Franklin (1971) verified 

experimentally some of the results obtained by them at microwave frequencies using 

collision dominated weakly ionized plasma. Guided waves in a general class of waveguides 

filled with biisotropic medium which is the most general isotropic linear medium i.e. non-

reciprocal chiral medium are studied by Kolvisto et.al. (1993). Field equations are derived 

first for arbitrary waveguide cross sections and then applied for a special circular cross 

section. The finite difference in the time domain method is used by Eduardo et.al. (1995) to 

study electromagnetic wave propagation in a rectangular cavity and in a rectangular 

waveguide containing magnetized plasma. The plasma is an anisotropic material and its 

permittivity tensor components are functions of frequency. A variational expression 

involving the transverse components of the electric field and their transverse derivatives is 

established by Cory et.al. (1996) for the propagation coefficient of an electromagnetic 

waver propagating along a lossless rectangular chirowaveguide with perfectly conducting 

walls. The solution providing the propagation coefficient of the dominant mode is given in 

terms of a very simple analytical expression enabling a tractable analysis of the device. The 

propagation coefficient of a second propagating mode is obtained simultaneously.  
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The present work in chapter II is an extension of that of Allis et.al. (1963) in which our aim 

is to study the effect of collision frequency with emphasis on phase velocities, phase and 

attenuation constants in case of dominant modes of electromagnetic waves propagating 

through a parallel plane and rectangular waveguide in the presence of external strong 

longitudinal and transverse magnetic field.  

Propagation characteristics including relativistic effects in moving dielectrics inside the 

waveguide has been studied by many investigators. [Collier and Tai (1965). Du and 

Compton (1966), Shiozawa (1966), Daly (1967), Gruenber and Daly (1967) and Yee 

91971)]. Jain et.al. (1975) discussed dispersion relation and cutt off frequencies for the TE 

and TM modes of propagation in case of temperate TMG uniaxial anisotropic relativistically 

moving plasma. Jain et.al. (1974) described the results of the theoretical study of 

electromagnetic wave propagation through a parallel plane waveguide containing 

relativistically moving temperate lossless plasma in the presence of strong transeverse static 

magnetic field. Propagation and cut off frequency for collisional warm relativistically 

moving transversely magnetized plasma filled waveguide along with some simplified cases 

have been analyzed in chapter III. 

In the presence of transverse magnetic field, a growing surface wave occurs as a result of 

new type of interaction which has phase velocity close to drift velocity. A carrier waves in 

an infinite semiconductor such as InSb is regarded as a longitudinal space charge wave with 

a phase velocity close to the drift velocity, of electrons. Kino (1968) presented a theory 

regarding growing carrier waves in InSb which has a phase velocity near the electron drift 

velocity and is unstable with very large growth rate in the presence of a vernishers magnetic 

field. Burke and Kino (1968) observed growing surface waves in Indium Antimonide 

semiconductore where electrons are drifting througn holes in the presence of magnetic field 

perpendicular to direction of drift.  

The dispersion properties of slow electromagnetic surface waves are studied by Girka et.al. 

91966). Waves are propagating across external magnetic field in planar metallic waveguides 

with a dielectric coating and non-uniform plasma filling at the harmonics of electron 

cyclotron frequency. The analytical the numerical investigations of the surface modes are 

carried out using the kinetic description for plasma particles.  
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The transverse plasma cyclotron wave spectrum is studied. Plasma density in homogeneity 

in modeled by a set of plasma layers with uniform density. Maxwell equations system with 

boundary conditions is solved to obtain the dispersion equation. Dispersion properties of 

slow electromagnetic surface waves propagating on the harmonics of the electron cyclotron 

frequency across the external steady magnetic field are studied in the case when the 

magnetic field is parallel to the plasma metal interface [Azarenkov et.al. (1997)]. 

Theoretical investigation of these surface modes is carried out using the kinetic description.  

The effect of the plasma density transverse in homogeneity of plasma particles 

concentration and of the external magnetic field value on the dispersion properties of the 

surface waves on electron cyclotron harmonics (SWCH) is researched. The effects of 

dispersion of slow electromagnetic surface waves propagating across an external magnetic 

field in planar metallic waveguides with dielectric coating and non-uniform plasma filling 

on the harmonics of the electron cyclotron frequency are studied by Girka et.al. (1997). The 

theoretical investigation of the surface modes is carried out using a kinetic description for 

the plasma particles and plasma boundary. The effect of the transverse plasma density in 

shomogeneity on the electron surface cyclotron-wave spectrum is investigated. It is shown 

by Gradov et.al. (1993) that the nonlinear surface waves on the boundaries of a thin plasma 

slabs can propagate as single wave solutions.  

Lee and Cho (1995) investigated the electromagnetic surface waves propagating on the 

planar interface between un-magnetized warm two-fluid plasmas of different densities and 

between a magnetized warm plasma and free space. The most general forms of the 

dispersion relations are obtained in closed forms and various limiting cases are discussed.  

In particular, the influence of a cold plasma on the surface ion acoustic wave in analysed. 

Girka and Zolotukoin (1994) showed that the dispersion properties of surface waves 

propagating in metal rectangular waveguides with n-semiconductor filling can be studied 

effectively analytically by the interactive method with using the results of azimuthal SW 

theory as a zeroth approximation. The interactive method is used for investigation of 

dispersion properties of SW propagating in direction perpendicular to external axial 

magnetic field in a metal rectangular waveguide filled n-semiconductor. Non-ordinary 

electromagnetic surface waves are shown to propagate in the considered waveguides.  
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Wave propagation in a 70 GHz transversely magnetized partially filled ring-form solid-

plasma waveguide has been theoretically analyzed by Obunai (1996) assuming the plasma 

material to be an n-type InSb ring at liquid nitrogen temperature. Surface wave resonant 

characteristics of two possible propagation modes and their dependence upon the waveguide 

curvature have been numerically analysed. The results of the experiments are in good 

qualitative agreement with the calculated results for one of these modes. These findings 

both theoretically and experimentally confirm the existence of the slow surface wave 

resonance in the waveguide. Propagation characteristics of 70 GHz slow surface waves in 

a partially filled coaxial solid plasma waveguide in an -dependent azimuthal magnetic field 

have been theoretically analyzed by Obunai (1996).  

Results of numerical analysis reveal that the non-uniformity of the magnetic field exerts no 

essential effect on the existence of the slow surface wave resonance, but that the magnetic 

field required for the propagation of the slow wave is considerably reduced. Wave 

propagation characteristics of a 70 GHz image guide consisting of a transversely 

magnetized p-InSb slab have been studied experimentally by Yodokawa and Obunai (1997). 

The results indicate the possibility of using -InSb as a component of dielectric waveguides.  

It has also shown that the propagation characteristics of this image guide can be controlled 

by light irradiation. The present wok in chapter V is an extension of work of Kino (1968). 

Phase constant and growth rate of a surface wave in a near intrinsic semiconductor has been 

computed and the result has been compared with that in case of infinite semiconductor.  

Any amplifier can be converted to an oscillator by positive feedback and any oscillator can 

be represented as a one port device with a negative terminal resistance. We look at the 

system exhibiting the instability as a travelling wave amplifier and we describe the model 

for possible convective two stream instability in n-type GaAs. No negative- differential bulk 

resistance was observed in semiconductors like Ge and Si [Ryder (1953)] during high 

electric field experimental work. The difficulty ws principally due to not being able to get 

a sufficient number of electrons to populate the negative mass states. Successful steps in the 

search for negative differential resistance were given in independent theoretical papers by 

Ridley and Watkins (1961) and Hilsum (1962) involving two bands and the transfer of 

electrons from one band to other by means of a high electric field.  
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In n-type Gallium arsenide semiconductor at certain thereshold value of electric field 

transfer of electrons from lower valley to upper valley begins [Liao (1991)]. The microwave 

properties of InP/GaInAs heterojunction double avalanche region (DAR) diode have been 

explored by Mishra et.al. (2001) using some computer simulation program which is capable 

of estimating the integrated device properties as well as the dynamic negative resistance 

contribution from the individual space step of the diode. This, negative resistance 

distribution profile reveals many interesting features as the power generating mechanism of 

the IMPATT diode. Our objective in chapter VI is to study wave propagation in negative 

differential conducting medium and relate the resulting instabilities to the equivalent two- 

stream instabilities. This description will clarify of close relationship between the different 

ways of approaching the study of negative differential resistance media. Based on two 

stream instability approach variation of phase velocity and growth rate for different driff 

velocities under different- electric field conditions has been calculated. 
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Chapter 2 

Chapter 2: Dominant Modes in Parallel Plane and 

Rectangular Waveguides Filled with Uniaxial 

Anisotropic Lossy Plasma 

2.1 Introduction: 

The nature of electromagnetic wave propagation through a system of parallel conducting 

plates has been discussed. It is shown that various wave modes exist in this configuration. 

Imposing two more conducting plates, the concept of the hollow rectangular waveguide has 

been developed. The concept of cavity and its resonance properties have been obtained by 

imposing two more conducting walls along the axis for closing the open ends of rectangular 

and cylindrical waveguides. It is showns that these cavities are very useful for the 

determination of dielectric constants of materials and even getting as output of different 

radiations such as LASER and MASER etc.  

Singh (1991) considered electromagnetic wave propagation between two parallel 

conducting planes of infinite extent separated by a distance of the order of a wave length. 

The free space is assumed between the two conducting planes. Marques et.al. (1993) 

presented a rigorous and systematic method of analysis of the electromagnetic wave 

propagation in parallel plate waveguide with a multilayered bianisotropic medium. The 

method is applied to the numerical study of parallel plate waveguide with a multilayered 

medium including lossless ferrite layers magnetized at an arbitrary direction. Both the 

propagation constant and the transmitted power are computed. Girka and Pavlenko (1999) 

studied the dispersion properties of slow electromagnetic surface waves propagating across 

an external magnetic field in planer plasma filled dielectric coated ion cyclotron frequency 

waveguide. The theoretical analysis is carried out using the kinetic description of plasma 

particles. The influence of the transverse dimensions of the plasma layer permittivity of the 

dielectric coating of the waveguide walls and external magnetic field on the spectrum of ion 

cyclotron SWs (CSWs) are investigated.  
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The electromagnetic wave propagation through the system of parallel plates obey the 

Maxwell's field equations at all points on the conducting planes. Singh (1973) and Singh 

at.al. (1976) analysed the propagation characteristics such as phase constant, attenuation 

constant etc. of electromagnetic waves passing through gaseous plasma filled parallel plate 

waveguide under the influence of an external magnetic field. The propagation 

characteristics of microwaves in free space and in dielectric and ferrite filled waveguides 

are well known [Van Bladel and Higgins (1951), Collin (1960), Rosenbaum (1964), 

Chatterjee and Chatterjee (1965), Jordan and Balmain (1980). Ramo et.al. (1970). Gardiol 

(1968) and Gardiol and Vander Vorst (1969). The propagation characteristics of the 

electromagnetic waves in a waveguide filled with cold stationary and homogeneous plasma 

are duscyssed in considerable detail by Allis et.al. (1963). They taking into account the 

dielectric model of the plasma considered the effect of strong longitudinal and transverse 

magnetic fields such that h >> p on the propagation characteristics of waveguide 

containing cold plasma in terms of (−B) diagrams. They concluded that the characteristics 

of a free space waveguide is modified by the presence of the plasma medium. Only electron 

component of plasma takes part in the phenomena of interest. Bevc and Everhart (1962), 

Tuan (1969), Kalluri (1970), Gruenber and Daly (1967) and Gonzalez (1971) discussed 

electromagnetic wave propagation in waveguides containing gaeous plasma. Novel features 

of phase and attenuation characteristics in case of propagation of electromagnetic wave in 

a colalitional plasma column magnetized in the axial direction and enclosed in a conducting 

cylinder are outlined by Biswas and Basu (1987). The propagation characteristics of 

waveguides partially and completely filled with solid state plasma in the presence of 

transverse magnetic field have been discussed by many investigators [Barlow and Koike 

(1963), Toda (1964), Hirota (1964), Engineer and Nag (1965), Rahman and Gunn (1969), 

Arnold and Rosenbaum (1971), Nejib and Ruduski (1973a) and Gupta et.al. (1973)] Takeda 

(1994) calculated the dispersion relation and the wavelength of microwaves required to 

produce [ECR] plasmas in waveguides by approximate and exact equations. A wave can 

also propagate through a high density magnetized plasma in a waveguide with an extremely 

small diameter. Methods of quasi-static approximation and rigorous calculations of the 

phase constant variation of an electromagnetic wave in a rectangular waveguide with gas 

discharge plasma in dielectric tubes disposed along the longitudinal axis of the waveguide 

are considered [Belous et.al. (1996)].  



Concept of Microwave Plasma Interaction with Reference to Different Field Conditions 

24 

 

It is shown that, for negative values of the plasma permitivity, there are qualitative and 

quantitative discrepancies between phase constant dependence on the redii of dielectric 

tubes calculated by these two methods. The wave dispersion property in completely plasma-

filled waveguide with definite magnetic field is analysed [Zhu and Liu (1997). A revised 

dispersion equation is derived and calculated. A new division of wave modes is given. 

Compared with the old division, this is more suitable. The propagation properties of a 

plasma dielectric waveguide immersed in an external magnetic field are presented [Hu and 

Ruan (1988)]. The field component expressions, eigenvalues and characteristic equations 

have been obtained.  

The variations of the propagation properties with plasma parameters, external magnetic 

field and frequency are discussed in detail on the basis of the method of separation of 

variables combined with the technique of Muller's calculating roots. The study of cut off 

frequency of rectangular waveguide filled with dielectric and plasma medium has been 

studied by Du and Compton (1965) and Singh (1993). In this chapter the propagation 

characteristics in case of parallel plane and rectangular waveguides filled with 

homogeneous uniaxial anisotropic collisional plasma is considered for parameters 

appropriate to laboratory plasma in parallel plane waveguide the propagating dominant ET, 

TM and TEM modes are analysed with an emphasis on phase refractive index variation with 

waveguide dimension and plasma parameters. In rectangular waveguide filled with cold, 

homogeneous lossy plasma under influence of strong longitudinal and transverse magnetic 

fields the dominant TE and TM modes are analysed with an emphasis on study of phase and 

attenuation constants with varing appropriate plasma parameters. Whole computations in 

this chapter have been done by taking electron number density n  1014 per cubic meter 

(appropriate to laboratory plasma), the waveguide dimensions along X-direction, d =1 = 

5.0cm. and along Y-direction b = 2.5cm. (appropriate to x-band of frequency). The 

corresponding plasma frequency p, free space waveguide cutoff frequency  and 

transverse wave number along X-direction 







===

1
.. 1



d
kkei d  come out to be 56.4 

GHz, 42.13 GHz and 62.8 rad/m respectively. The single conductor waveguides do not 

allow the propagation of TEM waves which is true in the case of rectangular and cylindrical 

waveguides.  
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2.2 Effect of Collisions on Electromagnetic Wave Propagation: 

The dispersion equation for electromagnetic wave propagation can be derived with the help 

of the collisional conductivity of the plasma equation. The conductivity of the plasma in 

response to the imposed electromagnetic field is written as  

( )−
=

p p

pp

m

qn

j

j
,


   p = 1,2,3    (2.1) 

Where, np and qp are number density, mass and charge of species p.  and  are wave and 

collision frequencies. The conductivity of plasma is imaginary. The electron current in a 

collisionless plasma lags behind the electric field vector by /2 radians.  

Therefore, the electron current is said to be inductive. However, in the presence of 

collisions, the phase lag of /2 is disturbed. The real part of E.J shows that a part of the ern 

energy of the wave is dissipated into the collisional plasma where E is electric field and J is 

current density.  

The conventional dispersion equation in the presence of binary collisions between electron- 

neutral and electron-ion is written as  
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Where Z-/, is the dimensionless collision parameter. For longitudinal plasma waves, the 

dispersion equation modified and is written as  
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         (2.3) 

We find that the principal effect of collision is to produce damping of longitudinal as well 

as of transverse waves. For longitudinal waves, the solution of equation (2.3) is easily 

obtained  



Concept of Microwave Plasma Interaction with Reference to Different Field Conditions 

26 

 

ir

p
j

j



 +=

−
=

2

4 22

      (2.4) 

The frequency of plasma waves thus obtained is complex, therefore, the wave which varies 

as e-j4 now has an additional damping term. The electric field wave vector is thus written 

as  
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We rationalize the dispersion equation (2.2) and write as  
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We find that due to collisional effect, the dispersion equation acquires a complex term.  

Therefore, the analysis of the dispersion equation can be carried out either by assuming  

to be real and  to be complex or by assuming  real and  complex. The complex wave 

number can be written as  

  = +j        (2.7) 

With,  and  both real. The form of the harmonic wave propagating along the Z-axis can 

be written as  

  Ex = Eoe
(ijt−yz) 

  = Eoe
 j (t−z) e−z       (2.8) 

The positive values of  show damping of the electromagnetic wave as it propagates along 

the positive Z-direction.  

The negative values of  for waves propagating along the positive Z-direction show the 

exponential growth of the wave.  
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Similarly, with real , the complex frequency can be written as  

  = r + ji        (2.9) 

The negative value of i shows the growth of the wave as it propagates along the positive 

Z-axis whereas positive values of i show the decay of the wave propagating along the 

positive Z-axis. 

In the propagation band defined by  > r the attenuation of the wave increases with 

increasing values of  and reaches a maximum value and thereafter falls off to zero 

asymptotically. The maximum attenuation of the wave caused by either  or i is found  for  
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Where  
22

4

3
pu  = , In the limit of a very large collision frequency equation (2.6) reduces 

to  

 
→
itlim   K2c2 = 2      (2.11) 

That is, in the limiting case of a very large collision frequency, the plasma behaves like a 

free-space.  

This behaviour of plasma is understandable because infinite collisions make the plasma 

highly non-conducting; therefore, the electromagnetic wave propagates without any loss of 

energy. This behaviour of the plasma is analogous to wave propagation through free- space.  

2.3 Boundary Conditions: 

In previous chapter boundary conditions at the interface of two media have been outlined. 

However the same conditions are derived here in case of an interface consisting of a good 

conductor as used in parallel plane or rectangular waveguide.  



Concept of Microwave Plasma Interaction with Reference to Different Field Conditions 

28 

 

Current carrying conductors, satisfy ohm's law. For good conductors carrying finite current, 

the electric field within the conductor everywhere is zero [Ram et.al. (1970)].  

The corresponding magnetic field within the perfectly conducting planes is also zero.  

These two conditions are consistent with two Maxwell's equations namely.  

  
t

B
E




−=        (2.12) 

 and  

  . B = O        (2.13) 

Emerging from these equations, one has tangential components of E zero everywhere in 

conductor i.e.  

  0= En        (2.14) 

 and the continuity of normal component of B requires that  

  n, B = 0       (2.15) 

 where n is surface normal. 

In the absence of external currents, the magnetic field outside the conductor is given by  

 
t

E
B




=         (2.16) 

One can obtain derived boundary conditions from the two boundary conditions given by 

equations (2.14) and (2.15).  

Substituting of E from Maxwell's equations in equation (2.14) one obtains.  

  n (B) = 0      (2.17) 
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and likewise substituting for B form Maxwell's equation in equation (2.15), one obtains.  

  n (B) = 0      (2.18) 

These conditions imply that the normal component of the electric field vector is not 

necessarily zero, since there can be some charges on the conducting surfaces, and likewise 

the tangential component of the magnetic field vector is not necessarily zero, since there 

can be some surface currents in the perfectly conducting plates.  

2.4 LMG parallel plane waveguide 

2.4.1 Development of Theory: 

We consider a waveguide consisting of two parallel perfect conducting planes separated by 

a distance d along X-direction and extending infinitely in the Y and Z directions. The space 

between two planes is assumed to contain homogeneous cold lossy plasma. The propagation 

direction of signal inside the parallel plane waveguide is along Z-axis. The plasma and wave 

frequencies are negligibly small in comparison to gyro-frequency because of externally 

applied strong static magnetic field. In longitudinally magnetized (LMG) parallel plane 

waveguide case the strong static magnetic field is applied along Z-axis.  

The dielectric constant of uniaxial anisotropic lossy plasma which is a tensor of rank two is 

given by Singh (1973) as  

 



















=

3300

010

001

       (2.19) 

Where 
( )



j

p

−
−=

2

33 1 , plasma frequency 

2/1

0

2













=

m

ne
p and  is collision 

frequency.  

All field vectors are assumed to very as exp(jt−z) where  is the propagation constant,  

and  are phase and attenuation constants.  
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Now Maxwell's crul equations can be written as  

 xy HjH 0 −=    xy EjH 0=   

 y
x

x Hj
x

E
E 0 −=




−−   y

x
x Hj

x

H
E 0−=




−−   (2.20) 

  y

y
Hj

x

E
0−=




   y

y
Hj

x

H

330=



  

Where 0 and 0 are free space permeability and permittivity. From the above equations, 

one obtains the followin linear differential equations for transverse field components.  

  
x

E

k
E z

x




+
=

2

0

2


 

  
x

H

k
H x





+
= 2

2

0

2


      (2.21) 

  
x

H

k

j
E z

x




+
=

2

0

2

0




 

  
x

H

k

j
H z

y




+
=

2

0

2

0




 

In equations (2.20) and (2.21) the fields are assumed invariant because of no boundary in 

Y-direction i.e. .0=




y
 The field configurations that can exist inside parallel plane 

waveguide satisfying the above set of equations and boundary conditions fall into following 

classes.  

The first one is the transverse electric (TE) wave in which electric vector is transverse to 

the direction of propagation while the magnetic vector has both transverse and longitudinal 

components.  
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The second one is the transverse magnetic (TM) wave in which magnetic vector is entirely 

transverse to the direction of propagation whereas the electric field has both transverse and 

longitudinal components. The third one is transverse electric and magnetic (TEM) wave in 

which electric and magnetic vectors has only transverse components.  

2.4.2 Transverse Electric (TE) Waves: 

For TE waves, put Ez =0. From equations (2.20) one obtains  

 0

2

02

0

2

y

y
Eh

dx

Ed
=        (2.22) 

 where 

 
2

2
2

0

2

0

22

0 ,
c

KKK


 =+=       (2.23) 

 and 

 Ey = Eyo exp (−z) 

Equation (2.22) is a second order differential equation whose solution is of the form 

 Eyo = C1 sin kdX+C2 cos kdX     (2.24) 

Where C1 and C2 are constants 

Applying boundary conditions which state that tangential components of electric field is 

zero at the boundary of conducting walls i.e. Ey = 0 and d, one obtains  

 Ey = C1 sin kdx exp (−z) 

where ,1

d

m
kd


=  m1 is the wave number in X-direction and is a positive integer. Its each 

value specifies a particular field configuration or moder and the wave associated with the 
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integer m1 is designated as the TEm1,0 wave. Phase refractive index is obtained using 

equation (2.23) as  

 
2

22

1
p

d

p

p

ck

V

c


 −==        (2.26) 

 where phase velocity 
k

Vp


=  

2.4.3 Dominant TE mode: 

It will be noticed that the smallest value of m1 that can be used in equation (2.26) in m1=1, 

because m1 = 0 makes all the fields identically zero.  

Thus for dominant transverse electric (TE10) mode, putting m1=1 and 
d

kd


=  in equation 

(2.23) we have  

 
2

0

2

2 k
d

−







=


        (2.27) 

Putting in general  = +j where  is attenuation constant and  is phase constant. In this 

case attenuation does not exist i.e. =0. Form equation (2.27) one obtains 

 

2

2

0

2








−=

d
k


  

 
2

22
22

d

c
c w 

 −=        (2.28) 

phase refractive index for dominant TE1,0 mode is given by 

 
2

1
2

22






d

c
p −=        (2.29) 
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Making use of equations (2.21) and (2.25) and putting Ez=0, the expression for field 

components between parallel planes are  

 Ev = C1 sin kdx exp ( )zjk p0−  

 Hz = ( )zjkxkC
k

pd

p





01

0

0
expsin −      (2.30) 

 Hz = ( )zjkxkC
j

k
p

d 


041

0

expcos −  

The above transverse field components for dominant TE modes are obtained as  

 Ex = ( )zjk
d

x
C p


01 expsin −  

 Hx = ( )zjk
d

x
C

k
p

p







01

0

0
expsin −−     (2.31) 

 Hz = ( )zjk
d

x
C

dj
p






01

0

expsin −−  

2.4.4 Transverse Magnetic (TM) Waves: 

Putting Hz = 0 for TM modes. equation (2.20) yields the following differential wave 

equation for H as 

 ind
v Hk

x

H
−=



 2

2

2

       (2.32) 

The solution of above equation can be written as  

 Hx =  (C2 sin kdx + C4 cos k4x) exp (−z) 
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However from equation (2.20, the expression for Ez can be obtained as 

 ( ) ( ) zxkCxkC
J

k
E ddz 

 

−−


= expsincos
11

41
4    (2.33) 

Applying boundary conditions which state that Ez =0 at x = 0 and d, one obtains for 

dispersion relations as  

 ( ) 2

33

2

0

2

dkk =+        (2.34) 

Separating real and imaginary parts and eliminating  we have 

( )
( ) ( )

044

2

22222

2
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22222
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
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(2.35) 

2.4.5 Dominant TM Mode: 

For dominant TM mode put mi= 1 i.e. kd = ,
d


 the equation (2.35) yields  

( )
( ) ( )
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p

p

p

p

dcd
  (2.36)  

which gives the relation for phase refractive index as  
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(2.37) 

The field components for dominant TM mode for uniaxial anisotropic lossy plasma can be 

expressed in terms of p. as; 
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  ( )zjk
d

x
CH py 


04 cos −=  

  ( )zjk
d

x
C

k
E p

p

x 





04

0

0
expcos −


=  

  ( )zjk
d

x
C

d

xj
E pz 






04

330

expsin −


=    (2.38) 

For collisionless case i.e.  =0, equation (2.37) simplifies to  
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2.4.6 Dominant TEM Mode: 

 Putting  ................in dispersion relation equation (2.35) on has  

  1==
p

p
V

c
  

 and field components are written as  

  ( )zjk
c

C
E px −


= exp

0

4  

  Hx= C4 exp (−jk0)z     (2.40) 

The equation (2.40) is independent of guide geometry and magnetic field and fields are 

entirely transverse.  
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2.4.7 Results and Discussion: 

The lowest order TE mode that can exist is the TE10 mode Usual TEm0 mode equation (2.26) 

shows that the phase refractive index is independent of the presence of plasma and strong 

magnetic field and has the characteristics of free space waveguide with only dependence on 

wave number kd in X-direction. The propagation of wave takes place for frequencies greater 

than kdc and with velocity of light at very high frequencies with negligible effect of even 

separation between planes. Since the value of p is  either real of imaginary but not complex 

of a particular wave frequency the wave ceases of propagate below a frequency kdc. 

Equation (2.29) has been computed for 
d

c
=1885 GHz and variation of phase refractive 

index p with microwave frequencies has been shown in Figure (2.1). It is concluded from 

Figure (2.1) for dominant TE (i.e. TE10) mode that the value of p increases fastly for values 

of  greater but close to 18.85 and then approaches unity. It means propagation of signal is 

possible for frequencies greater then 
d

c
 and at very high e.m. wave frequencies the effect 

of plasma presence and hence collision frequency is not observed. It becomes almost like 

free space wave propagation. Below cut off frequency , 
d

c
 e.m. wave does not propagate 

because refractive index becomes imaginary and is called evanescent mode. The ratio of 

velocity of light in free space to the phase velocity of microwave signal in LMG uniaxial 

anistropic parallel plane waveguide i.e. the index of refraction p has  been computed for 

dominant TMn mode from equation (2.37) for 
d

c
=18.85 GHz taken suitably for X-band 

waveguide, plasma frequency p = 56.4 GHz and collision frequencies  = 1 and 10GHz 

suitable for laboratory gaseous plasma. For comparison, curve for collisionless case  =0 

has also been depicted in Figure (2.2).  

The positive values of 
2

p  indicate propagation of wave and negative value the 

evanescence. The value p =1 indicates that phase velocity of the wave is equal to speed of 

light. The collisionless curve (=0) has got two branches: first is the slow wave branch 

having phase velocity less than velocity of light and other fast wave branch having phase 
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velocity higher than c and in between the two branches there is no propagation of 

electromagnetic wave. From the Figure (2.2) it is observed that the range of evanescence is 

56.4 GHz <  < 59.46 but for collisional plasma one observes no such evanescence: the 

propagation of wave is possible over all frequencies down to zero. In the low frequency 

region of the curve the value of phase velocity goes on decreasing with increases of 

frequency upto certain frequency.  

With further increase of frequency the phase velocity increases and approaches the value of 

the velocity of light and the propagation is similar to that of free space. Peak values of p 

decrease with decrease in collision frequency as seen from the curve.  

In case of dominant TEM mode here, TM mode dispersion relation reduces to free space 

propagation. Phase velocity of electromagnetic wave is equal to the velocity of light and is 

independent of frequency as well as the distance between the two parallel planes.  

Also there is no cutoff in case of TEM mode i.e. electromagnetic waves of all frequencies 

can propagate along the guide. This means that behaviour of the parallel plane waveguide 

is similar to that of free space and thus the electromagnetic field is entirely transverse as 

seen in equation (2.40).  

2.5 TMG Parallel Plane Waveguide 

2.5.1 Development of Theory: 

Let s consider two pallel sheets of a perfect conductor infinite in extent, parallel to the Y, Z 

plane and separated by a distance d along X-axis. This parallel plane waveguide contains 

homogeneous, lossy temperature plasma. In transversely magnetized (TMG) case, the 

magnetic field is applied in the direction of plate separation i.e. X-axis.  

The plasma frequency and wave frequencies are negligibly small in comparison to electron 

cyclotron frequency because of externally applied strong static magnetic field. The direction 

of propagation of signal is along Z-direction. 

The dielectric tensor appropriate for the case of uniaxial anisotropic transversely 

magnetized (TMG) lossy plasma in given by [Singh (1973)]; 
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Under this condition Maxwell's equations can be written as; 
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The above equations can be combined to yield expressions for Ex Ey, Hx and Hy in terms of 

axial field components Ez and Hz as: 
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From the wave equation it can be seen that propagating waves are easily classified into TE, 

TM and TEM modes with respect to the direction of propagation.  

2.5.2 Usual and Dominant TE Modes: 

For this case put Ez = 0. Following the same procedure as in case of dominant TE modes of 

LMG parallel plane waveguide one finds that the expressions for phase velocity and field 

components are the same as those in case for LMG parallel plane waveguide and are given 

by equations (2.29) and (2.31) which characterize the wave propagation in free space 

parallel plate waveguide.  

2.5.3 Usual and Dominant TM Modes: 

From equations (2.42) with Hz = 0,  the differential equation for Hy is  
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     (2.44)  

Proceeding in the same manner as the TM modes for the case of LMG parallel plane 

waveguide, equation (2.44) can be solved with the appropriate boundary conditions to 

obtain the dispersion relation as:  

  ( ) 022

011

2 =++ dkk       (2.45) 

Putting  = +j and separating real and imaginary parts we have expressions for phase and 

attenuation constants for dominant TM mode as  
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 (2.46) 

 and  
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From equation (2.46) one obtains expression for the phase refractive index as  
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Equation (2.47) give the phase refractive index for a transversely magnetized waveguide 

filled with weakly ionized plasma. For a lossless plasma i.e. when collisions between 

electrons and neutrals are ignored i.e.  = 0, equation (2.47) reduced to  
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The field components for dominant TM modes can be determined from equation (2.43) with 

Hz =0 as  

 ( )zjk
d

x
E

k
E p

p

x 





00

110

0
expcos −


=  

 ( )zjk
d

x
E

dj
E pz 






00

0

expsin −


=     (2.49) 

 ( )zjk
d

x
HE py 


00 expcos −=  



Dominant Modes in Parallel Plane and Rectangular Waveguides Filled with Uniaxial Anisotropic… 

41 

 

where E0 and H0 are amplitudes of electric and magnetic vectors. 

2.5.4 Dominant TEM Modes 

Putting value of m1 = 0 i.e. kg = 0 in equation (2.45) and following the same procedure the 

expression for refractive index is obtained   
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As it is a particular case of equation (2.47), p is independent of guide geometry. Distance 

between the parallel planes do not influence the propagation characteristics but is possible 

at all frequencies. There is no propagation through lossless plasma filling TMG parallel 

plane waveguide having frequency less than the plasma frequency.  

The field components possible in dominant TEM mode of TMG parallel plane waveguide 

filled with uniaxial anisotropic lossy plasma are  

 ( )zjkE
k

E p

p

x 



00

110

0
exp −


=      (.251) 

 ( )zjkHH py 00 exp −=  

They are independent of guide geometry, magnetic field and are entirely transverse.  

2.5.5 Results and Discussion: 

In case of dominant transverse electric mode for TMG parallel plane waveguide the 

propagation of microwave is similar to that in LMG parallel plane waveguide case and is 

shown in Figure (2.1)  

In order to study the effect of collisions one the propagation characteristics in dominant TM 

(TM1,1) mode of TMG parallel plane waveguide, phase refractive index is computed from 

equation (2.47) for different values of microwave signal frequencies with collision 



Concept of Microwave Plasma Interaction with Reference to Different Field Conditions 

42 

 

frequency  = 1 and 10GHz as running parameter for a fixed value of 
d

c
=18.85GHz and 

plasma frequency p =56.4GHz. The results are shown in Figure (2.3). 

For comparison curve for collision less case  = 0 has also been shown. Each   0 has also 

been shown.  

Eavh   0 curve has two branches isolated from each other. In the first branch p decreases 

from  (i.e. resonance condition) to 0 (i.e. cut off condition) as microwave signal frequency 

 varies from zero to 
d

c
 = 18.85GHz. This means that the phase velocity increases from 

zero to infinity. In the second branch p varies from 0 to 1 asymptotically as  is increased 

from 
d

c
 = 18.85GHz. and onward. This means that the phase velocity decrease from 

infinity to the velocity of light. In collision less case  = 0, the region of evanescence extends 

between 18.85GHz <  < 56.4GHz where propagation of signal is not possible as shown in 

Figure (2.3). Here also first branch has variation of refractive index from  for  = 0 to 0 

for  = 
d

c
 = 18.85GHz. and second branch has value of p = 0 again for  = 564 GHz and 

reaches the value of p = 1 asymptotically.  

Equation (2.50) has been computed for  = 1 and 10 GHz with value of plasma frequency 

appropriate to laboratory plasma and (−p) curve for dominant TEM mode in case of 

parallel plane TMG plasma waveguide has been shown in Figure (2.4).  

Propagation in TEM mode for TMG parallel plane waveguide is independent of guide 

geometry and is possible for all frequencies but for collision less case the curve has a branch 

with cutoff at plasma frequency.  

It is observed from figure (2.4) that for very low frequencies phase velocity of wave is 

relatively higher for highly collisional plasma but the order changes beyond some frequency 

for each curve.  
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Finally the phase velocity for each curve reaches asymptotically the speed of light, curve 

for each collision frequency has got some minimum value of p which moves towards high 

frequency side with increase in collision frequency. There is no propagation through lossless 

plasma filling TMG parallel plane waveguide having frequency less than the plasma 

frequency.  

2.6 Longitudinally Magnetized (LMG) Rectangular Waveguide:  

2.6.1 Development of Theory: 

Propagation characteristics of electromagnetic waves for dominant modes in a rectangular 

waveguide containing cold, homogeneous lossy plasma under the influence of strong 

magnetic field in the direction of propagation can be discussed with the help of Maxwell's 

equation and equation (2.19) for dielectric tensor.  
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Where a variation of type  exp (jt −z) has been assumed. The transverse components of 

the field vectors can be related to the longitudinal components by the equations 
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Where ẑ  is unit normal vector along Z-direction. The solution can be obtained by assuming 

either Ez =0 (TE modes) or Hz = 0 (TM modes).  

2.6.2 Dominant TE Mode: 

For obtaining the characteristics of electromagnetic waves in the TE mode, put Ez = 0 

equation (2.52) may be manipulated to yield.  
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This equation can be solved by using Maxwell's equations and appropriate boundary 

conditions to give  
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  Which gives expressions for phase constant as  
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corresponds to cutoff frequency of free 

space rectangular waveguide. This equation is similar to the equation for the free space 

waveguide with cut at c.  

The wave inside the waveguide travels with velocity of light of higher frequencies.  
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For frequencies below c, the fields d not propagate but oscillate everywhere along Z-axis 

in phase. This is called evanescent mode.  

Insertion of the assumed Hz value in equation (2.52) and (2.53) with Ez = 0 permits the TE 

field components to be written as  
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  Hz = Ho   cosk1x  sin k2y 

It can be seen from field equations that wave of TEm1,0 type are possible except for the TE0,0 

mode in which case fields go to zero.  

The fields travel unattenuated through uniaxial anisotropic lossy plasma filling rectangular 

waveguides overall frequencies down to zero.  

2.6.3 Dominant TM Mode: 

For TM mode put Hz = 0 one can obtain from equations (2.52) the differential equation Ez 

is 
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The partial differential equation (2.58) can be solved by the usual technique of assuming a 

product solution of the type  

  Ez = Eo sin k1x sink2y exp (−z) sin t   (2.59) 

By putting the appropriate boundary conditions for Ez at the wall of guide, one can show 

that 
1

1
1

m
k =  and 

b

m
k

2
2 =  where transverse wave number m1 and m2 are integers 

designating the various modes. The value of Ez may then be substituted in equation (2.58) 

to give  

  ( ) 22
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2

33 ckk =+        (2.60) 

Where propagation constant is complex  = +j. The equation (2.6) for propagation 

constant contains real and imaginary parts.  

After eliminating , these equations yield expressions for phase constant for the plasma 

filled waveguide as  
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 For the case of dominant TM mode which moves down the waveguide predominantly, put 

m1 =1 and m2 =1 equation (2.61) yields 
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(2.62) 

Similarly the equation of attenuation constant for dominant TM (M1,1) mode is given as  
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(2.63) 

Thus the phase and attenuation constants for TM11 mode depend upon the guide dimension, 

collision and plasma frequencies.  

These are the fourth degree equation in phase or attenuation constants of waveguide filled 

with lossy anisotropic plasma.  

Inclusion of collision frequency changes the dispersion relation for propagation mode by an 

additional term 

( ) 2222222
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c

 and some modification in second term totally 

dependent on collision frequency parameter.  

When collisions are not taken into account i.e. collision frequency is allowed to go to zero 

  = 0 the equations (2.62) and (2.63) reduce to  
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Using value of Ez in equation (2.53), the complete field components for TM1,1 mode can be 

written as [ exp(−z) sin t    omitted] 
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These expressions show the variations of each components of electric and magnetic field 

with x and y. It is seen that if either m1 or m2 is zero, all fields are zero. Thus TMm1,0 or 

TM0m2 mode of propagation cannot exist in the rectangular waveguide.  

2.6.4 TEM Modes: 

When transverse electromagnetic (TEM) waves are field into rectangular waveguide, the 

bounding surfaces give rise to non-zero E and B fields along the axis of the guide. The basic 

character of the TEM wave is changed into various modes of TE and TM waves.  

The propagation of the TEM wave requires the B field to be in the transverse plane and 

satisfies the divergence equation for the magnetic field. Therefore, if a TEM mode wave 

exists inside the waveguide, the B lines will be closed loops in the plance perpendicular to 

axis. From Maxwell's curi equation, one finds that the magnetomotive force around each of 

these must be equal to the axis current flowing through the loop. In the case of rectangular 

waveguide, there is no axial conductor to sustain the axial current.  

Therefore, the single conductor waveguide do not allow the propagation of TEM waves 

which is true in the case of rectangular and cylindrical waveguide.  
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2.6.5 Results and Discussion: 

Propagation characteristics for TEX mode in LMG rectangular waveguide is independent 

of presence of plasma thus of plasma frequency and collision frequency i.e. same as that of 

the free space waveguide. Using equations (2.62) and (2.63) propagation and attenuation 

constants have been computed for different values of collision frequency 1GHz and 10GHz 

p = 56.4GHz, 1=5.0cm, and  b = 2.5cm and the result has been presented in figs. (.25) and 

(.26). For comparison collisionless  = 0 case has also been depicted in Figure As seen from 

Figure (2.5) collisionless curve has got two branches : one having resonance at  = p and 

other branch has lower cutoff at 
22

cp  + . Figure (2.5) indicates that the effect of 

collision frequency is to alter the general characteristic feature of the waveguide in that it 

does exhibit neither resonance at  =p nor cutoff at  = 
22

cp  + . The inclusion of 

collision frequency makes propagation possible for all frequency ranges in contrast to that 

for  = 0. The curve exhibits a peak at a certain value of  which shifts towards lower 

frequency side as the collision frequency increases. The curve for higher  values cut the 

curve for lower  value twice and finally again higher values which is in keeping with the 

characteristic curves for homogeneous isotropic plasma. At high frequency the values of  

are not significantly changed by the collision frequency.  

Figure (2.6) shows that variation of  with  for different values of collision frequency  = 

1GHz and 10GHz for parameters appropriate to laboratory plasma and for waveguide 

dimensions corresponding to X-band frequencies. For comparison a curve indicating 

characteristics of lossless plasma  = 0 is also given. In this figure it is observed that 

attenuation for lower values of collision frequency is small and curves are relatively 

flattened in comparison to those of high frequency cases. There is a shift  in maxima in 

(−) curve towards lower frequency side with increasing collision frequency. The curves 

for higher collision frequency cut the lower collision frequency curves twice and finally 

atatins the corresponding free space values. For lossless plasma, wave propagates without 

attention in the propagation region  > 
22

cp  + . Unlike the case of parallel plane 

waveguide, a rectangular or cylindrical waveguide does not support TEM modes.  
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2.7 Transversely Magnetized (TMG) Rectangular Waveguide 

2.7.1 Development of Theory: 

In this case the direction of propagation and magnetic field are in Z and X axis respectively. 

The modes of wave propagation are considered with respect to the direction of magnetic 

field. For TMG using equation (2.41) for dielectric tensor the Maxwell's equations can be 

written as  
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From equation (2.67) transverse field components are expressed in terms of longitudinal 

components Ex and Hx as  
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Where the longitudinal fields Ex and Hx are found to satisfy the following equations 
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Once again the propagation of electromagnetic waves in the waveguide can be split into TE 

and TM modes. It can be shown that TE modes are not affected by the presence of the 

plasma or the magnetic field i.e. It is same as that found in case of free space waveguides.  

2.7.2 Dominant TM Mode: 

For TM modes set Hx =0, the dispersion relation is obtained as 

  ( ) 02
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011
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Separating real and imaginary parts of complex propagation constant in equation (2.71) one 

gets expressions for phase and attenuation constants as  

 4 + X2+Y = 0  

 and  
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 For dominant modes i.e. TM1,1 mode 

 
( )

22

2222
2

bl

blc
c

+
=


  and 

2

2
2

1
l

k


=  

Thus equations (2.72) and (2.73) for phase and attenuation constants in case of TM1,1 mode 

can be written as  
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The propagation of electromagnetic waves is possible only in the ranges of parameters for 

which the values of 2 is positive and real. The cutoff frequency  c0 in this case is found to 

be equal to k1c i.e. 
1

c
  For lossless plasma the equations (2.74) and (2.75) reduce to the 

same expression for phase and attenuation constants as given by Allis et.al. (1963) for 

transversely magnetized plasma waveguide. Like, LMG uniaxial anisotropic plasma 

rectangular waveguide case TEM mode is not supported in this case also.  

2.7.3 Results and Discussion: 

The Propagation constant for dominant TM mode from equation (2.74) has been computed 

for different values of collision frequencies = 1GHz and 10GHz, l = 5.0cm and b = 2.5cm 

appropriate to x-band waveguide and the result has been presented in Figure (2.7) taking 

appropriate values of plasma frequency, p = 56.4GHz. The (−) curve in collisional TMG 

uniaxial plasma has two branches: a low frequency branch which extends in range 0 <  < 

l

c
 and 18.85GHz is the critical frequency which characterizes the propagation and cutoff 

properties of a TM mode. In the Figure the (−) diagram corresponding to  = 0 (no 

collisions) is also shown for the sake of comparison.  

One concludes the following general behavior: When  = 0, the value of  comes out to be 

infinite and it decreases with increase of frequency and attains zero value at  = 18.85GHz 

i.e. a cutoff. When  > 
l

c
 i.e. at high frequency side  increases with increase of frequency 

and finally attains asymptotically the free- space values. It is also concluded from the graph, 

that at very low frequencies the value of  are maximum for lower  value curves. For the 

curve corresponding to  = 0 the value  falls rapidly with  than those curves 

corresponding to finite values of  and the slope decrease with increase of collision 

frequency.  

In the low frequency side, due to decrease in slope with increase of collision frequency, the 

curves intersect each other and intersection points of curves of higher  shifts slightly 

towards high frequency side.  
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The curve for collisionless ( = 0) case, has also got two separate branches and showing no 

propagation in the frequency range 11.42GHz < <69.43 GHz. In the very high frequency 

range, the values of propagation constant approach those values for curves corresponding 

to  = 0. It is also found from the curves for collisional case that the cut-off frequency is not 

affected by variation of collision frequency, but wholly depends upon the wave number in 

the X-direction.  

Equation (.275) has been computed for appropriate laboratory plasma parameters and the 

resulting (−) curve has been depicted in Figure (2.8) for collision frequencies  = 1 GHz 

and 10GHz. For comparison collisionless ( = 0) curve has also been shown. This curve 

encloses a region outside which propagation of wave is possible. Because of finite loss one 

observes that attenuation is present for the whole frequency range in contrast to  = 0 case. 

In Figure (2.8) the attenuation of wave for no collision takes place in the region 11.42GHz 

< < 69.43 GHz with a peak value  = 176 neper/ radian at  = 30GHz.  

In very low frequency range, the value of attenuation is more, lower the value of collision 

frequency. This order is also maintained in the region enclosed by  = 0 curve. In higher 

frequency side one observes more attenuation for higher collision frequency. With assumed 

values of Ex and Hx corresponding to corresponding to equations (2.69) and (2.70) and by 

use of equation (2.67) expressions for Ey, Hy, Ez and Hz are obtained for TE and TM modes 

respectively for transversely magnetized waveguide filled with lossy uniaxial plasma.  

2.8 Conclusion: 

The propagation characteristics of electromagnetic waves in waveguides filled with uniaxial 

anisotropic plasma including the effect of collisions are discussed. The effect of collisions 

in general is to introduce attenuation in the propagating modes.  

The usual characteristic feature of a free space waveguide is the existence of a pass band 

and the attenuation band. The inclusion of the effect of collisions in the formulation is to 

make the propagation possible at all frequencies. At very high frequencies the effect of 

collision is generally negligible because electrons are not able to respond to high frequency 

waves and thus there is no interaction between electromagnetic waves and electrons.  
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At low frequencies the phase velocity shows a rapid change with wave frequency. In general 

the inclusion of collision alters the propagation characteristics in the Transverse Magnetic 

™ modes without affecting the Transverse Electric (TE) modes because there is no 

component of electric field in the direction of strong magnetic field and thus interaction 

between electrons and the electric field is not possible.  

 

Figure 2.1: Variation of phase refractive index with microwave frequency for 

dominant TE1,0 mode in LMG and TMG parallel plane plasma waveguide   
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Figure 2.2: Variation of Phase Refractive Index with Microwave Frequency for 

Dominant TM1,1 Mode in Uniaxial Anisotropic LMG Parallel Plane Plasma Wave 

Guide. 
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Figure 2.3: Variation of phase refractive index with signal frequency for dominant 

TM1,1 mode in anisotropic TMG parallel plane plasma waveguide.  
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Figure 2.4: Variation of phase refractive index with microwave frequency for 

dominant TEM mode in TMG parallel plane plasma waveguide.  
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Figure 2.5: Variation of Phase Constant with Microwave Frequency for Dominat 

TM1,1 Mode in Uniaxial Anisotropic LMG Rectangular Plasma Waveduide. 
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Figure 2.6: Variation of Attenuation Constant with Microwave Frequency for 

Dominant TM1,1 Mode in Unixial Anisotropic LMG Rectangular Plasma Waveguid.  
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Figure 2.7: Variation of phase constant with microwave frequency for dominant TM1,1 

mode in anisotropic TMG rectangular plasma waveguide. 
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Figure 2.8: Variation of attenuation constant with microwave frequency for dominant 

TM1,1 mode in anisotropic TMG rectangular plasma waveguide.  
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Chapter 3 

Chapter 3: Relativistically Moving Warm Lossy 

JMG Plasma Waveguide 

3.1 Introduction: 

The propagation characteristics of waveguide containing warm and stationary plasma in the 

presence of static magnetic field have been investigated by Samaddar (1964) and Sancer 

(1965). Tuam (1969) considered the wave propagation in a waveguide filled with warm 

stationary plasma in the presence of strong transverse magnetic field in the absence of 

collisions. He showed that the power transfer in the waveguide can take place not only by 

electromagnetic fields but also by velocity fields. The problem of guided waves in moving 

media was first discussed by Collier and Tai (1966). Their results showed that the 

expression for propagation constant in the stationary media was modified by the term 

depending upon the velocity as well as the constitutive constants of the stationary media but 

independent of the guide geometry when the media were moving. The results of 

Minkowski's theory were the foundations of their analysis. Du and Compton (1966) 

investigated the cutoff phenomena of guided waves in the moving media and showed that 

for a slowly moving medium there were two critical frequencies, separating three frequency 

ranges in each of which there was a different type of propagation whereas for a high speed 

medium cutoff phenomena was found to be absent. Later on another simple method was 

suggested by Shiozawa (1966), which was based upon the covariance of Maxwell's 

equations and the principle of invariance of phase [Sommerfield (1952)]. Gruenberg and 

Daly (1967) derived the perturbation formulae for the changes in the dispersion curves and 

phase velocity for the modes in an arbitrary composite waveguide structure containing 

dispersive medium in relative motion. Singh et.al. (1990) studied the cutoff for a rectangular 

waveguide filled with uniaxial anisotropic stationary warm lossy plasma. The externally 

applied strong magnetic field has been taken in direction perpendicular to the propagation 

direction. Jiangiang (1997) analysed an excitation of Cherenkov radiation by a thin annular 

relativistic electron beam in a plasma-filled, dielectric lined waveguide by use of the self- 
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consistent linear theory. The effect off the thin annular electron beam on the beam wave 

interaction is completely described by a jump condition. The dispersion equation and the 

simultaneous condition of the beam-wave interaction are derived. 

 Finally, the growth rate of the wave is obtained and the effect of the background plasma 

density and the electron beam radius on the growth rate of the wave are presented. Jain et.al. 

(1974) gave an account of the theoretical study of the propagation of electromagnetic waves 

through a parallel plane waveguide containing homogeneous, lossless, temperate 

relativistically moving plasma in the presence of strong transverse magnetic field.  

The normal propagating modes were classified into TE, TM and TEM waves with respect 

to the direction of propagation. The nonlinear propagation of relativistically, intense 

electromagnetic waves into collisionless plasmas with special emphasis on the dimensional 

plane wave solutions of the propagating, standing and modulated types was discussed by 

Kaw and Sen (1997). These solutions exhibit a rich variety of phenomena associated with 

relativistic electron mass variation and coupling between transverse electromagnetic and 

longitudinal fields. They have important applications to problems of laser propagation, self-

focusing in overdense plasmas, particle and photon acceleration and to electromagnetic 

radiation around pulsars.  

The present work in this chapter is an extension of that of Singh et. al. (1990) to include the 

effect of relativistic movement of plasma on propagation characteristics such as phase 

constant, cutoff frequency, power transfer down the guide. Our analysis is based on the 

covariance of Maxwell's equations, invariance of phase and boundary conditions under 

Lorentz transformations. Basic equations representing the fields and normal modes are 

written in the rest system and represented by primed frame of reference. Then by making 

use of principles of special theory of relativity and by applying Lorentz transformations the 

general equations are formulated in the unprimed system representing the moving frame of 

reference. Expressions for phase constant, power flow and cutoff frequency in case of a 

rectangular waveguide filled with relativistically moving warm lossy TMG plasma have 

been derived. Variation of cutoff frequencies with appropriate laboratory plasma parameters 

for X-band of rectangular waveguide for some simpler cases have been analysed.  
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3.2 Plasma Parameters Under Relativistic Effect: 

Special theory of relativity was developed in order to prove the invariance of Maxwell's 

field equations and to unify the electrical and magnetic phenomena. The relativistic 

transformations and their implications were extensively used to study the electrodynamics 

of charged particles and of the generation and propagation of electromagnetic waves. The 

electromagnetic wave theory of Maxwell was formulated during the period 1855 t 1865 

where Maxwell studied the consistency of existing experimental laws and unified these laws 

by adding a new term in Ampere's law. The special theory of relativity was propounded by 

Einstein in 1884-1905 with a view to reconcile with certain results of Maxwell's field 

equations.  

In this chapter since author is concerned with the properties of moving plasma medium it is 

necessary to understand the relativistic transformation laws for the electromagnetic field 

vectors, the wave vector, frequency and the plasma parameters. The result that the 

Maxwell's equations are covariant under Lorentz transformation is well known [Somme 

field (1952), Moller (1952) and Papas 1965)].  

Electric and magnetic fields transform into one another in different moving inertial frames. 

This is achieved with the help of Lorentz transformation equation and the invariance of total 

charge in the moving inertial frame. According to special theory of relativity the field 

vectors ( )',',',' HEDB  in the printed system (moving system) s' by the Lorentz 

transformations:  

 ( ) ( ) 0
2

0

0
0

.
1' v

v

EV
rBvErE +++=  

 ( ) 0
2

0

0
0

2

.
1

1
' v

v

BV
rEv

c
BrB −+








−=  

 ( ) v
v

DV
rHv

c
DrD

2

0

0
0

2

.
1

1
' −+








−=      (3.1) 



Concept of Microwave Plasma Interaction with Reference to Different Field Conditions 

66 

 

 ( ) ( ) 0
2

0

0
0

.
1r' v

v

EV
rDvHH +++=  

 Where ( )
c

v
uur 02/12 ,1 =−=

−
 

 c is velocity of light.  

Further the Lorentz transformation of time and space co-ordinates is  

 x' = x 

 y' = y 

 z' = r (z −v0t) 
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Now the principle of phase invariance [Sommerfeld (1952)] suggests that 

  ('t'−'z') = (t−z)            (3.3) 

Where   and ' are propagation constants in two frames of reference S and S'. By making 

use of equations (3.2) and (3.3) one obtains the following relations 

  ' = r 







− 

c

u
      (3.4) 

  ' = r (−cu)        (3.5) 

The transformation laws for plasma parameters have been considered by Getmantsev and 

Report (1960), Scarf (1961) and Unz (1966a). Scarf's statement that the plasma frequency, 

the cyclotron frequency, the collision frequency and resonant frequency all undergo 

Doppler shift under transformation from S' and S is not correct, since all these frequencies 
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are the natural frequencies of plasma. Unlike the electromagnetic wave frequencies, the 

natural frequencies of the plasma do not have a wave vector associated with them, and thus 

do not have the property of phase invariance which results in a Doppler shift.  

It is assumed that the rest system of co-ordinance S' is moving with a moving plasma at 

velocity Vo with respect to the laboratory system of co-ordinates S. The corresponding 

plasma frequency 'p, p of the same  moving plasma in the respective frames is given 

[Budden, (1961)] as 

  
0

2
2

'

''
'


=

m

en
p ,  

0

2
2

0


=
m

ne
     (3.6) 

Where (−e', m') and (−e,m) are the electron charge and mass n' and n are the electron number 

density in the respective frames and 0 is the free space permittivity. From the special theory 

of relativity mass of a moving particle increases while its charge remains invariant i.e.  

  e' = e, m' = 
r

m
      (3.7) 

From the Lorentz- Fitzgerald contraction one has the following transformation for the 

volume (Pauli, 1958) in the two respective frames 

 V' = rv        (3.8)  

Since the total number of electrons in V' as counted in S' is the same as the total number of 

electrons in V a counted in the S frame of reference, the n' and n the corresponding electron 

number volume densities (number/volume) one has  

  n' =
r

n
        (3.9) 

Thus one obtains relation for plasma frequency in S' and S  

  'p = p       (3.10) 
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Invariant under Lorentz transformations. Taking the average counted number of collisions 

of an electron with heavier particles in the rest frame of reference S' during an interval of 

time 't one obtains for collision frequency relation 

  ' = r        (3.11) 

The corresponding gyromagnetic (cyclotron) frequencies in the frame of reference S' and S 

is given (Budden, 1961) as  

  
'

'' 0'

m

Be
p = ,   

m

eB
b

0=     (3.12) 

For a neutral moving plasma with no net electrostatic field in the laboratory co-ordinate 

system, taking the static magnetic field along the velocity direction the relation between 'b 

and b is  

  'b = rb       (3.13) 

under the Lorentz transformation, the scalar pressure is invariant (Pauli, 1958). 

  p' = p        (3.14) 

and for the temperature (Chawla and Unz, 1971),  

  T' = rT             (3.15) 

The scalar pressures in two frames of references in terms of electron number densities and 

temperatures are given by:  

  p' = Kn'T'   and p = KnT    (3.16)  

Thus one obtains for acoustic velocity in the electron gas a', a in the frames of references S' 

and S (unz, 1966) 

  a' = ra        (3.17) 
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Above equations represent complete transformations of parameters relating to plasma in 

two frames so as to study the propagation of electromagnetic waves in relativistically 

moving plasma.  

3.3 Cutoff Frequency of a Waveguide Containing Warm Lossy Relativistically 

Moving TMG Plasma: 

3.3.1 Development of Theory: 

We consider a rectangular waveguide of dimensions’ l and b of perfectly conducting wells 

containing lossy warm plasma, which is supposed to be moving with respect to the guide 

walls with a constant velocity Vo in the Z- direction. A strong static magnetic field is applied 

in the X-direction. The plasma is taken to be weakly ionized in which electrons are warm 

with an average temperature higher than temperature of neutral particles. We consider two 

frames of reference, the primed system in the plasma and the unprimed system which is 

attached to the guide walls.  

With the help of linearized hydrodynamic equation of motion, equation of continuity and 

the equation of state Maxwell's equations can be put into the following form [Tiwari et.al. 

(1975)], as  
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 '''' 0 HjE −=        (3.19) 

The collisional drag term is due to collisions between electrons and neutrals.  

Permittivity tensor in primed system can be written as  

 'ˆ'ˆ'ˆ'ˆ'ˆ'.ˆ' '

1 zzyyxx ++=        (3.20) 
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and 0,0 are permeability and permittivity of free space. Equations (3.18) and (3.19) are 

basic equations which characterize the uniaxial aand compressible property of plasma inside 

the guiding structure in the primed system. Using equations (3.18) and (3.19) and assuming 

z' dependence of the type e−'z' in primed system one can express transverse fields with 

respect to the x' direction as,  
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Where 00

22

0 '' = k  

and ' = ' +j' ; ',' being attenuation and phase constants in the primed system E'x, H'x 

and p satisfy the following equations  
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Propagation characteristics of warm lossy TMG plasma waveguide will be aanalysed in 

terms of two normal modes: transverse electric (TE) modes and transverse magnetic ™ 

modes.  

3.3.2 Transverse Electric (TE) Modes: 

For TE modes, no longitudinal electric field exists, set E'x = 0, then p' is found identically 

zero from equations (3.23) and (3.25). The only potential function H'x, which must satisfy 

equation (3.24) gives the dispersion relation for TE modes. The solution of equation (3.24) 

for Hz satisfying boundary conditions is written in the form as:  

   

 
'

'

2'

'

1'

0

' coscos y
l

xm
x

l

xm
HH x =      (3.26) 

Where 
'

0H  is constant value of amplitude and ' stands for propagation constant in the 

primed system.  

Using the appropriate boundary conditions one obtains for TE modes  
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Where m1 and m2 are number of half sine variations in  and y directions. The phase 

constant in primed notation obtainable from equation (3.27) is appropriate only for TE 

modes as is evident from equation (3.24). Phase constant TE can be obtained in unprimed 

system by using relativistic transformation as  
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The cutoff for TE modes are found by setting TE from equation (3.28) equal to zero hence 

equation (3.28) yields  

 c0 = kcc         (3.29)  

It is evident from equations (33.28) aand (3.29) that the propagation characteristics are 

unaffected by plasma parameters and relativistic movement.  

It is same as that obtained in case of free space rectangular waveguide. The cutoff frequency 

depends only one dimensions of waveguide.  

3.3.3 Transverse Magnetic (TM) Modes:  

It is interesting to study the dispersion relation and propagation property of TM modes. For 

TM modes set Hx = 0.  

The potential functions E'x and p' satisfy the coupled wave equations ((3.23) and (3.25). Let 

E'x and p' have solutions in the following form:  
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 Where C1 and C2 are constants  
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The values of  
'

' 1
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m
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=  and 

'
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2

b

m
k


=  are to be determined by applying boundary 

conditions.  

Substituting equation (3.25) in to equation (3.23) and applying appropriate boundary 

conditions that tangential component of electric field and normal component of magnetic 

field are zero at the conducting walls of waveguide, the dispersion relation for TM modes 

for warm lossy relativistically moving TMG plasma waveguide in primed system is 

obtained as:  
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Now we use the transformation relations for plasma parameters, waveguide dimensions 

used in equation (3.32) from primed system to those in unprimed system. Again using 

normalised parameters for phase constant, wave frequency, collision frequency in terms of 

plasma frequency, the following dispersion relations corresponding to various modes in the 

unprimed system is obtained as  
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It is evident from equation (3.31) that the terms dependent on collision frequency, drift 

velocity and compressible property of plasma modify the characteristic equation for TM 

modes.   

The cutoff frequency for TM modes in case of relativistically moving warm lossy plasma 

waveguide can be obtained by setting B = 0 in equation (3.33) equal to zero.  

 0'' 224

0

4 =−+ NMuu coc          (3.36) 

where M' and N' are obtained by putting B = 0 in expressions of M and N given by equations 

(3.34) and (3.35) and  = c0. It is evident from equation (3.33) and (3.36) that the 

normalized phase constant and cutoff frequency depends upon relativistics velocity, plasma 

parameters (such as plasma frequency, compressible property and collisional property) and 

waveguide dimensions. In next sections variation of cutoff frequencies with appropriate 

laboratory plasma parameters in some simpler cases have been computed.  

It is also desirable to see how the power flow changes. Since the velocity vector only has 

an X-component, pu.z is always zero. The pressure and velocity fields do not contribute to 

the power flow in the waveguide.  

With the help of equations (3.21) and (3.22), the potential function and transformation 

relation, it is easy to establish the orthogonal relation for TM modes with a different mode 

index. Thus, for a TM mode the power flow is given by  
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It is clear that expression in equation (3.37) does not contain the acoustic speed 'a' explicitly. 

However, the temperature affects the power flow through the propagation constant  in 

equation (3.36). Also we observe that the power flow which depends solely on the field 

components have the same form as those obtained for stationary media because the 

expression for the electromagnetic field components do not change in form when the plasma 

is moving, the only essential difference being in the value of  of TM mode.  
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3.4 Special Cases: 

3.4.1 Waveguide Containing Warm Lossy Stationary TMG Plasma: 

In this case the rectangular waveguide is filled with transversely magnetized warm lossy 

plasma subjected to strong magnetic field. The plasma medium is assumed at rest with 

respect to conducting waveguide. The dispersion relation and cutoff for waveguide filled 

with warm stationary lossy transversely magnetized plasma can be obtained by puttin u=0 

i.e. r =1 in equations (3.33) and (3.36) respectively. Thus the expression for cut-off 

frequency obtained from equation (3.36) is given as  
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Equation (3.38) gives the relation for cutoff frequency which is independent of free space 

waveguide cutoff but depends upon plasma frequency, acoustic speed of electrons, collision 

frequency and transverse wave number along X-direction.  

3.4.2 Waveguide Containing Warm Lossless Stationary TMG Plasma 

Here inside the conducting rectangular waveguide is a fully ionized warm stationary lossless 

plasma. A strong static magnetic field is applied in the X-direction and the guide axis is 

along the Z direction. Thus by putting r =1 and Z = 0 in equation (3.33) and (3.36) the 

dispersion relation and cutoff can be obtained in case of TM modes. The expression for 

cutoff frequency is obtained from dispersion relation by putting phase constants term equal 

to zero as  
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  This equation is similar to that obtained by Singh (1973).  
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3.5 Result and Discussion: 

It is found for TM mode from equation (3.33) that for lossy compressible plasma, 

propagation is possible overall frequency ranges with a cutoff frequency dependent on 

plasma parameters. Finally, at higher microwave frequencies, the value of B approaches 

that of free space waveguide showing that there is no interaction between electrons and 

electromagnetic waves. It is concluded that lossy characteristics of plasma makes 

propagation possible over all frequency ranges.  

In case TE mode the wave characteristics and dispersion relation remain the same as that of 

free space rectangular waveguide due to sufficiently strong external magnetic field.  

Propagation of waves is possible only in the ranges of parameter for which B2 is positive 

and real. The curve for phase constant in TM mode has got two branches, one extending 

over each frequency making propagation possible and other branch makes propagation 

possible as high pass filter. The second branch having cutoff is perturbed waveguide mode.  

Equations (3.38) and (3.39) have been computed taking normalized appropriate plasma 

parameters and X-band waveguide dimensions the variation of cut off frequency has been 

studied. Equation (3.39) in case of uniaxial anisotropic warm stationary lossless TMG 

plasma has been computed taking appropriate and the variation of cutoff co is plotted in 

Figure (3.1). It is observed from the graph that due to increase in compressible property of 

plasma, the cutoff frequency for both propagation modes increases as shown in the figure 

for 0 = 0.2 and 1= 0.1. The normalized cutoff  frequencies c0 for appropriate plasma 

parameters in lossless (Z=0) and temperate ( = 0) plasma are 0.09519 and 1.015034. The 

warmer is the plasma the higher is the cutoff frequency. At cutoff the wavelength of 

electromagnetic wave is infinite and at resonance it is zero and the energy of the wave is 

disputed heating the medium. When collisions between electrons and neutrals are taken into 

account again (c0 vs ) curve as obtained from equation (3.38) for fixed value of Z= 0.5, 

c = 0.2, 1 = 0.1 has been shown in figure(3.2). It is observed from the graph for perturbed 

waveguide mode that with the increase in compressible effect for a fixed value of collision 

frequency the cut off increases slightly whereas for temperate ( = 0) plasma c0 = 0.98. 

Introduction of even small collision events predominates over compressible property.  
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Figure (3.3) depicts the co versus Z curve for perturbed waveguide mode for normalized 

parameters  = 0.01, 1 = 0.1. It is observed that cutoff frequency for TM modes in this 

case decreases for low collision frequencies and increases slightly for higher collision 

frequencies.  

 

Figure 3.1: Variation of Cutoff Frequency with Normalized Acoustic Speed of 

Electron for Lossless Case.  



Relativistically Moving Warm Lossy JMG Plasma Waveguide 

79 

 

 

Figure 3.2: Variation of Cutoff Frequency with Acoustic Speed for Perturbed 

Waveguide Mode for Lossy Case.  
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Figure 3.3: Variation of Cutoff Frequency with Normalized Collision  Frequency for 

Lossy Case.  
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Chapter 4 

Chapter 4: Microwave Propagation in LMG Solid 

State Plasma Waveguide 

4.1 Introduction: 

Many devices have been developed recently in which the magnetic field is applied in the 

direction of the propagation of the electromagnetic wave. In this chapter a detailed 

discussion of the waveguide characteristics filled with a semiconductor in the presence of a 

longitudinal magnetic field is presented. The presence of longitudinal magnetic field makes 

the medium anisotropic and the dielectric constant becomes a tensor, because, no one has 

to consider the electron motion perpendicular to both magnetic and electric fields due to 

Lorentz force.  

The chapter begins with a brief historical introduction which is given in section (4.2). The 

dispersion characteristics of the waveguide in the presence of finite and strong magnetic 

field are discussed in section (4.3). The results obtained by the author are presented in 

section (4.4).  

4.2 Historical: 

One of the earliest experiments which demonstrated the nonreciprocal transmission 

characteristics of a waveguide filled with a solid state plasma in the presence of longitudinal 

magnetic field was described by Kuno and Hershberger (1967). They used n-type Indium 

antimonide (InSb) at the frequency of 35.95 GHz and the whole experiment was performed 

at liquid nitrogen temperature (770K). They have measured the attenuation experimentally 

and found that the attenuation in the forward direction is more than the attenuation in the 

reverse direction. They attributed the attenuation to the Faraday rotation caused by the 

longitudinal magnetic field. They have further shown that a device employing Faraday 

rotation can be used as isolators, attenuators and switches in the microwave region.  
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Steele and Vural (1969) discussed the dispersion characteristics of a cylindrical waveguide 

filled with InSb containing an electron-hole plasma in the presence of an external magnetic 

field along the guide axis. They have discussed in general various modes which can exist 

inside a waveguide containing mobile charges in an applied magnetic field under a variety 

of conditions. May and McLeod (1968) observed experimentally the nonreciprocal 

characteristics in a waveguide partially filled with n-InSb under a longitudinal magnetic 

field operating at liquid nitrogen temperature using Faraday rotation. The theoretical and 

experimental study of a circular waveguide in the presence of longitudinal static magnetic 

field containing a coaxial InSb rod was done by McLeod and May (1971), who described 

the use of such a system as an isolator at 35 GHz. All the experimental work was carried 

out at liquid nitrogen temperature to achieve nonreciprocal operation in the presence of 

magneto-static field. Two types of 35 GHs semiconductor isolators namely field 

displacement isolator and mode coupling isolator have been demonstrated at liquid nitrogen 

temperature for coaxial solid state plasma waveguide in the presence of longitudinal 

magnetic field. In the case of field displacement isolator described by effective dielectric 

constant of the solid state plasma has a larger real part for one particular direction of applied 

magnetic field and hence the wave will be excluded from the plasma medium. For the 

reverse direction of applied magnetic field plasma has a small effective dielectric constant 

which is entirely imaginary and wave will not be strongly excited in the medium. This leads 

to property of field displacement isolator. Whereas, in the case of mode coupling isolator 

described by McLeod and May (1971) the variation of coupling between two possible 

modes at various strength of applied magnetic field has been considered. The coupling 

gradually changes from the low loss to the high- loss mode as the static magnetic field 

increases. This will give a technique of obtaining a new type of isolator know as mode 

coupling isolator. Design of mode coupling isolator can yield a device with low forward 

loss and very high isolation. The experimental studies have been made under the following 

conditions.  

• The longitudinal applied magneto-static field is strong enough to make cyclotron 

frequency greater than microwave signal frequency.  

• The product of conductivity mobility and the static magnetic field (i.e. nBo) must be 

large in comparison with unity.  
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The experimental and theoretical results of propagation characteristics were found to be in 

good agreement, so far as the general shape and amount of isolation is concerned. The 

propagation characteristics of electromagnetic waves in a circular waveguide containing a 

coaxial annular column of n-type InSb at liquid nitrogen temperature have been discussed 

by Kanda and May (1974).  

Such a system can be utilized for the development of millimeter waveguide isolators. It has 

been observed experimentally by Ishizuka and Obunai that the 70 GHz millimeter wave 

propagation characteristics in a transversely magnetized waveguide loaded with a p-type 

InSb slab are markedly varied by applying a current considerably smaller than that used in 

the previous studies employing n-InSb.  

It is suggested that the shift of the slow- surface-wave resonant magnetic field in this 

waveguide is responsible for the observed variation. High resistivity silicon substrates 

demonstrated strong potential for applications as a microwave and millimeter wave 

substrate. A method to simulate a coplanar waveguide (CPW) on a doped semiconductor 

substrate is presented by Larocca et.al. (1996). Its salient point is the inclusion of a voltage 

dependent depletion width and built-in voltage due to the metal- semiconductor (Schottky) 

contact. The attenuation, effective dielectric constant and characteristic impedance are 

determined for different modes and applied biases.  

4.3 Propagation Characteristics in Rectangular Waveguide Containing 

Semiconductor Plasma in The Presence of Longitudinal Magnetic Field: 

The propagation characteristics of electromagnetic wave investigated by earlier authors 

through a waveguide containing a semiconductor plasma in the presence of a longitudinal 

magnetic field, have been discussed in section (4.2).  

In this section the author has developed the dispersion relation and discussed the attenuation 

and phase characteristics for the propagation of electromagnetic wave in a rectangular 

waveguide containing solid state plasma. A general dispersion relation for a bounded system 

in the presence of finite magnetic field parallel to the direction of propagation is developed 

and this is applied to the special case of a strong longitudinal magnetic field.  
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4.3.1 General Consideration: 

Consider a rectangular waveguide of uniform cross- section and of perfectly conducting 

walls completely filled with a semiconducting material. The external magnetic field B0 is 

along the Z-direction which is also the direction of propagation off the wave.  

The response of the semiconducting material to the electromagnetic fields in the presence 

of an external finite longitudinal magnetic field with drift and diffusion neglected can be 

described by a dielectric tensor and is given by  
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It has been assumed that the field vectors very as exp (jt−z) where  is the propagation 

constant which is assumed independent of position and is an arbitrary complex number 

+j. In equation (4.1),  is the collision frequency, p and c are the plasma and cyclotron 

frequencies respectively for electrons given by  
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Where L is the relative static dielectric constant of solid state plasma, which is much 

greater than unity for the semiconducting materials, m* is the effective mass for electron 

single free carrier, 0 is the scalar free space permittivity.  

From Maxwell's equations the differential equations for Ez and Hz components can after 

some manipulations, be written in the following coupled form:  
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 and 

  00

22

0 = k  

K0 is free space propagation constant and 0 is the scalar permeability assumed to be that of 

vacuum (assuming a nonmagnetic conducting medium). The presence of charged particles 

does not affect the permeability of the medium. T includes only differentiations with 

respect to the directions transverse to the direction of wave propagation.  

Equations (4.2) and (4.3) show that, in general, medium gives rise to a coupling between. 

TM and TE modes.  

Also one can get a solution for the transverse fields in terms of the longitudinal fields [Allis 

et.al. (1963)] 
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k̂ is the unit vector along the Z-direction?  

From the above two coupled second order differential equations (4.2) and (4.3), one can 

derive the following fourth order differential uncoupled wave equations for Ez and Hz  
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 above equations admit solution of the from (−jx), hence  
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 and the four roots are given as 
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  By using binomial expansion, the four roots can be evaluated as  
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It is often more convenient to give solutions for each value of 
2

i  , of the form 

   022 =+ ziiT E        (4.10) 

 Where I = 1, 2 

Since equation (4.7) is of fourth order, two independent solutions of the form of equation 

(4.10) will in general be required.  

 

Thus 

 Ez = Ez1 + Ez2       (4.11) 
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4.3.2 Dispersion Relation for Parallel Plane Waveguide When the Longitudinal 

Magnetic Field is Finite: 

It is very difficult to solve the boundary value problem for the case of rectangular waveguide 

filled with semiconductor plasma in the presence of finite magnetic field, for which the 

variables cannot be separated and the expression for the dispersion relation cannot be 

obtained. For the sake of simplicity author has considered the case of a parallel plane 

waveguide for which the variation of field vectors along the Y-direction is assumed to be 

zero i.e. = /y = 0. The solution for Ez is of the form 

 

 ( ) ( )  ( )ztjeDeCeBeAE
xjxjxjxj
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exp2211

3333

 (4.13) 

  

Where A3, B3, C3 and D3 are four arbitrary constants which can be evaluated by applying 

appropriate boundary conditions. The general solution for magnetic field component 

independent of Y-direction can be given as  
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(4.14) 

The transverse components (i.e. Ex and Ey) can be determined with the help of equations 

(4.4), (4.13) and (4.14)  
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Applying the boundary conditions 

 Ez  = 0,  at x = 0   amd x = b 

 Ey  = 0,  at x = 0   amd x = b 

One obtains a system of four linear homogeneous equations in arbitrary constants A3, B3, 

C3, and D3 as  

 A3+ B3+ C3+ D3 = 0      (4.17)  

 
bjbjbjbj

eDeCeBeA 22111

3333

−−
+++ = 0    (4.18)  
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 A31P1 − B31P1 +C32P2  +D32P2  =0    (4.19) 

 02

223223113113
211 =−+−  bjbjbjbj

ePDePCePBePA  (4.20) 

he equations (4.17) to (4.20) can be put conveniently in the following matrix form: 
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= 0    (4.21) 

From the above determinantal equation one obtains the following transcendental equation 

equation determining the propagation constant , the transverse wave number 1, 2, the 

angular frequency , the plasma parameters p and c and the dimensions and the 

dimensions of the waveguide.  

     bbSinSinppbbCosPP 21

2

2

2

2

2

1

2

1212121 cos12 +=+−  (4.22) 

If it is assumed that ( )b1  and ( )b2  ≪ 1, one can approximately  

Write 

 Sin1b  = 1b 

 Sin2b  = 2b 

 Cos1b  = 
2

1
22

1 b
+        (4.23) 

 Cos2b  = 
2

1
22

2 b
+         

Hence equation (4.22) can be written as  
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Which is the dispersion relation for longitudinally magnetized parallel plane waveguide 

having plate separation of width b. From the dispersion equation, the propagation constant 

 is determined by examining both attenuation constant  and phase constant .  

4.3.3 Dispersion Relation for Rectangular Waveguide in The Presence of 

Infinitely Strong Longitudinal Magnetic Field: 

Due to mathematical difficulties encountered in the analysis of the dispersion relation (4.24) 

for  and  at various frequencies another simpler case of a rectangular magnetic field is 

considered.  

Consider a rectangular waveguide filled with semiconducting material with an infinitely 

strong magnetic field along the direction of propagation of the wave, so that all electron 

motions perpendicular to the applied static magnetic field can be neglected. With this 

approximation all the non-diagonal elements of the dielectric tensor vanish and all the 

diagonal elements perpendicular to the magnetic field reduce to unity. Under the influence 

of strong external magnetic field, the elements of dielectric tensor of equations (4.1) can 

give as  

 1 = 1 

 3 = 0        (4.25) 
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One can get the following dispersion relation for TM modes (i.e. Hz = 0 ) 
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l and b are waveguide dimensions in the X and Y directions and m1 and m2 are integers 

showing modes.  

In order to get above dispersion relation, the solution of the following form for Ez have been 

used with appropriate boundary conditions as 

Ez = E0 Sin K1x Sink2y exp(jt−z)          (4.27) 

 where 
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Separating real and imaginary parts of equations (4.26) one can obtain the expression for 

phase and attenuation constants after normalization in p as 

 YXXB +−= 22

2

1
       (4.28) 

 YXXA +−= 22

2

1
       (4.29) 

where 

( )
( )  













−

+−

−−
= L

c

Z

Z
X

2222

222

2

1

1
 



Concept of Microwave Plasma Interaction with Reference to Different Field Conditions 

94 

 

( ) 













+−


=

2222

24

2

1 Z

Z
Y c  

with 

p

c

pppp

ck
andZ

c
B

c
B















 0;;; =====  

The electric and magnetic field components transverse to the direction of propagation can 

be obtained from equation (4.4) taking Hz =0 for TM modes 
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For the of TM modes (Ez=0) usual set of equations are obtained which are similar to free 

space filled waveguide under the influence of strong longitudinal magnetic field.  

4.4 Result and Discussion: 

The phase and attenuation constants have been computed using equations (4.28) and (4.29) 

for a rectangular waveguide filled with n-type germanium for different values of normalized 

frequency in the microwave range.  

The parameters that are used at liquid nitrogen and room temperatures are given below.  
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At liquid nitrogen temperature (i.e. 77k) a n-type germanium sample having a carrier 

concentration of n = 4 1019 electrons/m3. electrons mobility n = 3.5m2/v.sec., and 

conductivity  = 22.0/ohm.m is used. At room temperature the following conditions for n-

type germanium are applied. Carrier concentration n =1020 electrons/m3, electron mobility 

n = 0.3600m2/v.sec., conductivity  = 5.76/ohm.m., the effective mass for electrons m* = 

0.3m0, which is considered to be constant at both the temperature. The values of collision 

frequency at these two temperatures are taken 1.671011/sec. and 1.631012/sec. 

respectively.  

Figures (4.1) and (4.2) show the results for phase and attenuation constants as a function of 

frequency with the given parameters and the sample of n-type germanium for the 

rectangular waveguide in the presence of strong longitudinal magnetic field. It can be seen 

that the phase constant increases as the frequency increases, whereas the attenuation 

constant increases as the signal frequency increases and attains a maximum value at a 

frequency depending upon the temperature. As the frequency is further increased the 

attenuation constant decreases. The peaks occur at 17.99 GHZ and 4.1 GHz for the 

temperature of 77K and 300K respectively. From the graphs it is concluded that there does 

not exist any characteristic cutt-off and propagation as well as attenuation is possible over 

all frequency ranges.  

At liquid nitrogen temperature the value of the phase constant is large while the value of the 

attenuation is small in comparison with values at 300K. This shows that the amount of 

attenuation can be reduced by reducing the concentration. This is to be expected because 

the collision frequency decreases as the carrier concentration decreases. The graphs also 

indicate that as the carrier concentration decreases of increases, there is large change in 

attenuation. For high concentration the attenuation constant is quite large implying that the 

electromagnetic wave is largely attenuated as it propagates through the waveguide.  

4.5 Conclusion: 

The dispersion relation for a bounded solid state plasma system in the presence of finite 

magnetic field in the direction of guide axis has been derived. In a special case the 

propagation characteristics of a rectangular under the influence of strong longitudinal 
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magnetic field have been discussed at liquid nitrogen and room temperatures. Solutions for 

propagation constant and field components are obtained for TM modes. The dispersion 

diagrames show that the value of phase constant increases with increase of single frequency 

for the propagation of TM Mode, whereas the attenuation constant increases with the 

increases of frequency and attains a maximum for a particular frequency depending upon 

the temperature. With further increase of frequency, the attenuation constant decreases.  

 

Figure 4.1: Dispersion Diagram for Z= 1.03 and C =0.61 at Liquid Nitrogen 

Temperature I.E. 77k  
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Figure 4.2: Dispersion Diagram For Z = 6.32 and C =0.33 at Room Temperature (I.E. 

300k) 
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Chapter 5 

Chapter 5: Growing Surface Waves in a 

Semiconductor (InSb) in the Presence of a 

Transverse Magnetic Field 

5.1 Introduction: 

Various types of wave propagations in gas plasma and in solid state plasma have undergone 

considerable study with regard to their potential applications in microwaves and millimeter 

wave devices [Crawford (1971), Allis et.al. (1963) Obunai (1993)]. Many types of wave 

propagation modes in plasma find two important classes of device applications: in 

nonreciprocal devices [Hirota and Suzuki (1966), Hirota and Suzuki (1970), Arnold and 

Resonbaum (1971), Sorrentino (1976), McLeodd and May (1971), Kanda and May (1974), 

Champman and Glover (1970)] and in active microwave devices [Verma and Gandhi 

(1973)]. The influence of transversal density non uniformity on the propagation of 

electromagnetic surface waves along plasma slabs and columns in the presence of collisions 

is analysed [Grosse et.al. (1997)] by numerical evaluations for phase diagrams of axially 

homogeneous plasmas.  

Moreover, the changes in the dispersion and damping caused by the occurrence of plasma 

resonances in the transversal/radian density profile are studied. In addition, complex modes 

and backward waves in the collisionless dispersion curves of isotropic plasmas are treated. 

The surface modes in the plasma cylindrical waveguide in a lossy material are analyzed by 

Hu and Ruan (1997), particularly for the variations of their propagations properties with 

plasma parameters and surrounding material.  

The characteristic equations of surface modes are derived and their relevant approximate 

solutions are given. The analysis shows that it can be used to improve the properties of mode 

suppressors and fabricate cut-off attenuators. Surface carrier wave amplification is InSb at 

X-band has been discussed in detail by Verma and Gandhi (1973).  



Growing Surface Waves in a Semiconductor (InSb) in the Presence of a Transverse Magnetic Field 

99 

 

Slow wave propagations in a particular type of transversly magnetized, partially filled, 

millimeter wave, parallel plate. Solide- plasma waveguide has been studied by Obunai and 

Sekiguchi (9174) with a view towards application in a slow wave circuit in a travelling wave 

amplifier where two different slow surface-wave modes propagate.  

The propagation characteristics in gas plasma waveguides can be controlled very rapidly 

allowing its application to many types of microwave and millimeter wave devices such as 

rapidly tunable attenuators and phaser (Crawford (1971)]. Obunai (1993) investigated 

experimentally the propagation characteristics of a 70GHz slow surface wave in a 

transversely magnetized, partially filled, parallel. plate, solid- plasma waveguide using n- 

InSb as the plasma material to which a pulsed current was applied.  

The surface wave resonant magnetic field increased substantially with an increase in the 

applied current. Subsequently, a variation of the electron density of the plasma material with 

the current was determined by measuring the reflecting from the plasma slab. The results 

indicate that the variation of the propagation characteristics is primarily explained by the 

variation of the electron density in the plasma material.  

The possibility of externally controlling the propagation characteristics of a slow surface 

wave in a solid plasma waveguide has been shown experimentally. Slow surface wave 

resonance in a partially filled transversely magnetized 70GHz parallel plate solid plasma 

waveguide has been studied [Obunai and Sekiguchi (1974)]. It has been confirmed 

experimentally that the propagation characteristics of the slow wave can be rapidly 

controlled by varying the plasma density [Obunai and Yoshida (1985)]. Obunai and Takeda 

(1995) showed that the transmission characteristics of a 70GHz transversely magnetized 

partially filled solid-plasma waveguide can be varied by irradiating the plasma material with 

a semiconductor laser. The experimental results are explained by the increase in the slow 

surface wave resonant magnetic field in the waveguide. These findings indicate the 

possibility of controlling the propagation characteristics of the slow surface wave in the 

solid plasma waveguide by means of optical injection. Ishizuka and Obunai (1995) observed 

experimentally that the 70GHz millimeter-wave propagation characteristics in a 

transversely magnetized waveguide loaded with a p-type InSb slab are markedly varied by 

applying a current considerably smaller than that used in employing n-InSb.  
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It is suggested that the shift of the slow-surface wave resonant magnetic field in this 

waveguide is responsible for that observed variation. Kimura et.al. (1995) studied 70 GHz 

slow wave propagation characteristics in a transversely magnetized partially filled ring-

form solid plasma waveguide experimentally, employing n-type InSb ring at liquid nitrogen 

temperature as the plasma material. Obtained results were compared with those for the 

previously studied straight parallel-plate configuration.  

It is clearly shown that the surface wave resonance corresponding to the one observed in the 

straight plasma waveguide takes place also in the curved structure, and the propagation 

characteristics are quite similar to those of the straight configuration. Reduction of the 

resonant magnetic field is found with increasing the curvature of the waveguide. Effects of 

plasma density non-uniformity on the surface wave propagation along plasma- plasma and 

plasma-dielectric interfaces are investigated by Aliev et.al. (1995). Plasma in-

homogeneities in longitudinal and transverse directions with respect to the direction of wave 

propagation are considered.  

The influence of the in homogeneity on the propagation properties (dispersion, absorption) 

of the surface waves and the space distribution of the wave fields is analysed. The wave 

behavior in the region of the quasi-static surface wave resonance is also studied. Girka 

(1994) studied dispersion properties of electromagnetic extraordinary surface waves 

propagating across external magnetic field in uniform cold collisinless plasma, fully filling 

rectangular cross-sectional (with sides a and b) metallic waveguide by using perturbation 

theory. In semiconductor physics such waves are called surface magneto-plasma polaritons. 

Comparison of these SW properties with those of azimuthal SW propagating in ring 

waveguide and SW in planer layers was made.  

Yadokawa et.al. (1997) studied slow surface wave propagation characteristics in a 70 GHs 

waveguide containing transversely magnetized p-type and n-type InSb slabs. Surface wave 

resonance occurs in this configuration. It is also shown that the magnetic field required for 

slow surface wave resonance is greatly reduced by the addition of the p-layer. The 

propagation characteristics of the mangetostic surface wave in a composite waveguide with 

a YIG film and YBCO were investigated theoretically and experimentally by Fukusako and 

Tsutsumi (1995). First, using the equivalent complex permittivity of YBCO obtained by the 
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two fluid model and the permeability tensor of a YIG film, the dispersion relationship of 

the waveguide was derived. It was proved theoretically that a strong non-reciprocity within 

the 2.4GHz bandwidth with low loss could be achieved by placing superconducting material 

in the waveguide. The influence of magnetic loss of YIG on the superconducting material 

also was discussed.  

The possibility of observing a low loss or amplifying carrier wave in a semiconductor has 

been the subject of recent theoretical investigations [Kino (1965), Gueret (1968), Robinson 

(1967) and Kino (1968)]. A carrier wave in an infinite semiconductor is normally regarded 

as a longitudinal space charge wave with a phase velocity close to the drift velocity of one 

type of carrier. It has also been shown by Kino (1965) that another type of carrier wave 

could possibly exist, a surface wave with a phase velocity close to the drift velocity of one 

type of carrier. Growing waves have been observed experimentally in a semiconductor by 

Burke and Kino (1968) in the situation where the electrons are drifting through holes in the 

presence of a magnetic field perpendicular to the direction of drift. The growth rates are 

extremely large depending on magnetic field and electron velocity. The velocity of the 

waves can be predicted accurately from considerations of a simple longitudinal carrier wave 

in the presence of holes in an infinite semiconductor. However, considerations of electron 

and hole interactions involving. However, considerations of electron and hole interactions 

involving the presence of magnetic fields [Gueret 91968)] or the inertial terms in the 

equations of motion [Kino (19650], yield rates of growth several order of magnitude less 

than the observed effect. In this chapter we have computed phase constant and growth rate 

of a surface carrier wave in a near intrinsic semiconductor and compared the result with that 

of infinite semiconductors [Singh et.al. (1965)]. Such waves have been observed by Burke 

and Kino 91968) in a near-intrinsic InSb in a transverse magnetic field in the frequency 

range from 10 to 40 MHz which grows spatially above a threshold drift velocity.  

5.2 Theory: 

A near intrinsic semi-infinite semiconductor (InSb bar) with its bounding surface along the 

plane y = 0 is considered. The d.c. magnetic field B0 is taken to be in X-direction and all rf 

and dc motions to be only in the Y and Z directions. All the quantities within the 

semiconductor will be denoted by the subscript A, and its permittivity by .  
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All quantities outside the semiconductor will be denoted by the subscripts B, dc and rf 

quantities by the subscripts 0 and 1, respectively, and the electrons and holes by the 

subscripts e and h respectively.  

The rf magnetic field will be neglected because of the very low carrier wave velocity. It will 

therefore be assumed that the rf electric field can be derived from a scalar potential 1 such 

that 

 E1 = 1         (5.1) 

 The equation of motion for the electrons is  

 ( )0111 BVEV yezeze −=         (5.2) 

 ( )
0111 BVEV zeyeye −=        (5.3) 

 Components of electron velocity from equations (5.2) and (5.3) are written as  
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e
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=       (5.4) 
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+
=       (5.5) 

where mobility e is negative for electrons and 

 e =  eB0        (5.6) 

 Here the relations 

i1e = oe V1e+ 1eVie           (5.7) 

 and continuity equation 

 .i1e + jw1e = 0        (5.8) 
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It is assumed that all quantities vary as exp. ( ) yztj  +− .  

It may then be shown for electron charge density using equations (5.1), (5.4), (5.5), (5.7) 

and (5.8) that 
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Where  is transverse wave number in Y-direction. A similar relation for hole charge density 

can be obtained as  
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It has been assumed that  ohV  and 10 = hh B   which is reasonable for InSb. 

Both ce and  ch are positive whereas e is negative.  

Poisson's equation taken the form 
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Putting values of  1e and 1h from equations (5.9) and (5.10) in equation (5.11) one has 
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5.2.1 Carrier waves in Infinite semiconductor: 

 From equation (5.12) we find that 
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a solution which is equivalent to that for waves in an infinite semiconductor.  

Thus for carrier wave in an infinite semiconductor from equation (5.13) we have 
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 The real and imaginary parts of above equation yield  
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 and  
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The equations (5.15) and (5.16) represent phase constant and attenuation constant in case 

of bulk carrier wave. 

5.2.2 Theory of Surface wave: 

Other solution of equation (5.12) i.e. 

 22  −  = 0        (5.17) 
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is therefore of interest. Equation (5.17) implies that  

 1e = 1h = 0 and 21 =0  

From equation (5.11) inside the semiconductor we may write  
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  Here   =  from equation (5.17).  

  We find similarly for outside the conductor as  
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1  

y has been taken −ve inside the semiconductor. The boundary conditions to be used at the 

surface are those described and discussed by Hahn and Kino for semiconductor. These are  

 1A = 1B        (5.20) 

 and 

 0 E1yB −E1yA = 1se + 1sh     (5.21) 
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Following Hahn, we write  
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where y1 is the displacement of electrons or holes in the Y direction near the surface of the 

semiconductor. For holes equivalent of equations (5.5) is written in similar fashion as 
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Substitution of equations (5.5) and (5.24) in equations (5.22) and (5.23) yield.  
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On the surface of semiconductor (i.e. y = 0) equations (5.18) to (5.19) reduce to  

1A0 =  Ae −jz 

E1yAo  = − Ae −jz 

E1zA0 = jAe −jz         (5.27) 

and 

1B0 = Be −jz 

E1zB0 = −Be −jz         (5.28) 
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E1zB0 = jAe −jz 

Subscript 0 symbolizes quantities on the surface of conductor. From equation (5.2) we have 

1A0 =  1B0
         (5.29) 

which means     

A = B          (5.30) 

Using equations (5.27), (52.8) and (5.30) we get relations  

E1zA0 = jE1yA0 

E1zB0 = − jE1yB0 

E1yA0 = E1yB0         (5.31) 

E1zA0 = jE1zB0 

Putting values of 1se and 1sh from equations (5.25) and (5.26) equation (5.21) and using 

equation (5.31) we have 
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which after simplification becomes  

 
( )

( )
0

1
1

**

0 =
−

−
++




−

oe

eeheh

Vj

j

j 






     (5.33) 

If we assume that 



+ 01



eh , the following result is obtained.  
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The real and imaginary parts of above equation yields  
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Similarly using exact calculation expression for phase constant is  
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Exact solution of equation (5.33) yield expression for growth rate as  
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5.3 Results and Discussion: 

The dispersion relation equation (5.34) describes a surface wave in a nominally p-type InSb 

and expressions for phase constant and wave growth are derived in equations (5.35) and 

(5.36) for surface waves and in equations (5.15) and (5.16) for carrier waves in infinite 

semiconductor. It will be seen that both cases predict a carrier wave with a phase velocity 

( )eheeoeV  /1/ *+ . the value of phase constant has been computed using equation (5.15) in 

case of nominally p-type InSb bar for appropriate parameters and the resulting graph for 
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phase constant with frequency for both infinite carrier and surface waves have been 

predicted in Figure (5.1). The growth rate for surface wave has been computed by using 

equation (5.36) for appropriate parameters and shown in Figure. (5.2). This wave grows 

with a growth rate per wavelength equal to ( )21/2 esheee  +  if e is negative due to 

particular direction of magnetic field. From equation (5.36), the gain is maximum, where 

1=e .  

The sign of magnetic field required for growing is such that holes and electrons will tend to 

move away from the top surface. On the other hand, the wave would be strongly attenuated 

if the magnetic field were reversed. 

It has be noted in this theory that even if the first two terms in equation (5.33) are retained, 

there is always growth. Surface wave theory predicts a growing wave with a large growth 

rate whereas the infinite semiconductor theory predicts a wave with a small loss shown in 

Figure. (5.3).  

Diffusion effect which are important, have not been taken into account. Diffusion tends to 

cause high loss at low drift velocities which should be decreased by the effect of a transverse 

magnetic field.  

It is expected that by inclusion of diffusion effect, there would be a threshold velocity for 

gain and a higher magnetic field for maximum gain. Also it appears from equation (5.18) 

that carrier wave amplitude decrease away from the surface. This is a new type of interaction 

between electrons and holes which leads to a growing surface wave in the presence of a 

transverse magnetic field.  

The basic reasons for this interaction are that the velocity of electrons moving towards the 

surface of a semiconductor depends, on the presence of a transverse magnetic field, on both 

the normal and parallel components of electric field. 

In this situation, the two components are 900 out of phase with each other, so the electron 

current in a particular direction may not necessarily be in phase with the field in the same 

direction. This can lead to growing waves.   



Concept of Microwave Plasma Interaction with Reference to Different Field Conditions 

110 

 

 

Figure 5.1: Variation of Phase Constant with Frequency of Surface Wave and Carrier 

Wave.  
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Figure 5.2: Variation of Growth Rate with Frequency of Surface Wave.  

  



Concept of Microwave Plasma Interaction with Reference to Different Field Conditions 

112 

 

 

Figure 5.3: Variation of Wave Loss with Frequency of Carrier Wave in Infinite 

Semiconductor.  
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Chapter 6 

Chapter 6: Two Stream Instability Due to 

Transferred Electron Effects in N-Type Gaas 

Semiconducting Plasma Having Negative 

Differential Conductivity 

6.1 Introduction: 

During high field experimental work in semiconductor like germanium and silicon [Ryder 

and Shockely (1951) and Ryder (1953)], no negative differential bulk resistance was 

observed. The difficulty was principally due to not being able to get a sufficient number of 

electrons to populate the negative mass states. Optical phonon scattering became the 

dominant energy-loss mechanism at high fields as it restricted the average energy of 

electrons to values far below the inflection point in velocity vs electric field curve. Other 

negative mass proposals in n-type germanium and p-type silicon [Kroemer (1959), 

Dousmanish (1960)] were also unsuccessful because of the isotropic nature of acoustic 

scattering. After inventing the transistor, Shockley suggested in 1954 [Shockley (1954)] 

that two terminal negative resistance devices using semiconductors may have advantage 

over transistors at high frequencies.  

The next step in the search for a negative differential resistance wave given in the search 

for a negative differential resistance were given in independent theoretical papers by Ridley 

and Watkins (1961) and Hislum (1962). They described a new method for obtaining 

negative differential mobility in semiconductors. The principle involved is to heat carriers 

in a light mass, high mobility sub-band with an electric field so that the carriers can transfer 

to a heavy mass, low-mobility, higher energy sub-band when they have a high enough 

temperature. Ridley and Watkins also mentioned structures in the conduction bands. Their 

theory for achieving negative differential mobility in bulk semiconductors by transferring 

electrons from high mobility energy bands to low mobility energy bands was taken a step 

further by Hilsum in 1962 ([Hilsum (1962)].  
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There are bulk devices where microwave amplification and oscillation are derived from the 

bulk negative resistance property of uniform semiconductors rather than from the junction 

negative resistance property between two different semiconductors. J.B. Gunn (1963) 

discovered a periodic fluctuations of current passing through the n-type gallium arsenide 

(GaAs) Specimen when the applied voltage exceeded a certain critical value.  

Two years later B.C. DeLoach, R.C. Johnston and B.G. Cohen discovered the impact 

ionization avalanche transit time (IMPATT) mechanism in silicon, which employs the 

avalanching and transit time properties of the diode to generate microwave frequencies. In 

later years the limited space charge accumulation diode and the Indium phosphide diode 

were also successfully developed. We consider a semiconductor having a conduction both 

with two minima separated by an energy difference.  

The lower energy minimum has electrons with a small effective mass and high mobility, 

whereas the upper energy minimum has electrons with high effective masses and lower 

mobilities. Initially all the electrons, with density n, are located in the lower minimum. As 

the applied electric field increases, the current density would increase linearly if all the 

electrons remained in lower energy minimum. If one imagines all the electrons to have been 

in the upper minimum, the current density would increase with a smaller slop.  

Actually as the electric field in increased, the electrons in lower minimum becomes heated, 

their temperature thus exceeds the lattice temperature, and at a sufficiently high electric 

field, some of electrons are transferred from lower minimum to upper minimum. If the 

transfer is sufficiently rapid with increasing electric field, a negative- differential resistance 

region in the characteristic curve is realized. Ridley and Watkins (1961) and Hilsum (1962) 

considered the III-V compound semiconductors to have the proper conduction band 

configuration for a transferred electron negative differential resistance. In particular, 

gallium arsenide seemed to have the desired properties. Hilsum Estimated that the threshold 

field for GaAs would be about 3KV/cm. This was later confirmed by the classic experiments 

of Gunn (1963). Electron transfer model was ultimately confirmed by Hutson et.al. (1965) 

using hydrostatic pressure to decrease the intervalley energy separation. In this chapter 

small signal behavior of waves propagating in a medium having a negative differential 

resistance arising from the electron-transfer mechanism is studied.  
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The expression for phase velocity and growth rate have been derived and numerically 

evaluated in terms of parameters of lower and upper valley conduction bands. The 

equivalence of the two stream instability concept to that of a negative differential resistance 

medium is established.  

In the strong signal limit, the negative differential resistance resulting from transferred 

electron behavior [Ridley and Watkins (1961) and Hilsum (1962)] in solid such as gallium 

arsenide (GaAs) leads to the Gunn effect. Butcher (1967) reviewed the detailed study of 

negative differential resistance in solids. Hilsum (1962) carefully calculated the transferred 

electron effect in several III-V compounds and was the first to use the terms transferred 

electron amplifiers (TEAs) and oscillators (TEOs). He predicted accurately that a TEA bar 

of semi-insulating GaAs would be operated at 373 K at a field of 3200 V/cm. Hilsum's 

attempt to verify his theory experimentally failed because the GaAs diode available to him 

at that time was not of sufficiently high quality. A few years to him at that time was not of 

sufficiently high quality. A few years before the Gunn effect Kroemer (1958) and (1959) 

proposed a negative mass microwave amplifier, In 1963 J.B. Gunn discovered the Gunn 

effect from thin disks of n-type GaAs and ny-type InP specimens while studying the noise 

properties of semiconductors. Ridley (1963) predicted that the field domain is continually 

moving down through the crystal, disappearing at the anode and then reappearing at a 

favoured nucleating centreand starting the whole cycle once more. Kroemer (1964) stated 

that the origin of the negative differential mobility is Ridley- Watkins- Hilsum's mechanism 

of electron transfer into the satellite valleys that occur in the conduction band of both the n-

type GaAs and the n-type InP and the properties of the Gunn effect are the current 

oscillations caused by the periodic nucleation and disappearance of travelling space charge 

instability domains. When positive and negative charges are separated by a small distance, 

then a dipole domain is formed. The electric field inside the dipole domain would be greater 

than the fields on either side of the dipole Because of the negative differential resistance, 

the current in the low field side would be greater than that in the high-field side. The two 

field values will tend toward equilibrium conditions outside the differential negative 

resistance region, where the low and high currents are the same. Then the dipole field 

reaches a stable condition and moves through the specimen towards the anode. When the 

high-field domain disappears at the anode, a new dipole field starts forming at the cathode 

and the process is repeated. Since starts forming at the cathode and the process is repeated. 
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Since Gunn first announced his observation of microwave oscillation the n-type GaAs and 

n-type InP diodes in 1963, various modes of operation have been developed, depending on 

the material parameters and operating conditions. The formation of a strong space-charge 

instability depends on the condition that enough charge in available in the crystal and the 

specimen is long enough, so that the necessary amount of space charge can be built up 

within the transit time of the electrons. This requirement sets up a criterion for the various 

modes of operation of bulk negative differential resistance devices. The pure accumulation 

layer is the simplest form of space charge instability. In the strong signal limit formation of 

a high field domain responsible for microwave generation and amplification due to a 

decrease in drift velocity with increasing electric field is discussed in case of multivalley 

semiconductor compound, such as the n-type GaAs. In this section time rate of growth of 

space charge accumulation arising out of space charge instability has been discussed for the 

sample under consideration.  

6.2 Theoretical Considerations: 

We consider here the specific case of a transferred electron medium from the view point of 

a two stream instability. Electron densities in the lower and upper valleys remain the same 

under an equilibrium conditions. When the applied electric field is lower than the electric 

field of the lower valley, no electrons will transfer to the upper valley. When the applied 

electric filed is higher than that of the lower valley and lower than that of the upper valley, 

electrons will begin to transfer to the upper valley. When the applied electric field is higher 

than that of the upper valley, all electrons will transfer to the upper valley. If electron 

densities in the lower and upper valleys are n1 and n2, the conductivity of the n-type GaAs 

is  

   = e (1n1 + 2n2)      (6.1) 

where e is the electron charge, 1, 2, n1 and n2 are mobilities electron densities 

corresponding to lower valley and upper valley.  

When a sufficiently high field E is applied to the specimen, electrons are accelerated and 

their effective temperature rises above the lattice temperature.  
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Furthermore, the lattice temperature also increases. The electron density and mobility are 

both functions of electric field. Differentiating equation (6.1) with respect to E yields  
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  If the total electron density is given by n0 = n1 + n2 and it is assumed that 1 

and 2 are proportional to Eb, where b is a constant, then  
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 Substituting equations (6.3) to (6.5) into equation (6.2) results in  
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 Differentiating Ohm's law J = E with respect to E yields  
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For negative resistance, the current density J must decrease with increasing field or the ratio 

dJ/dE must be negative i.e. right hand side of equation (6.8) is less than zero. In other words, 

the condition for negative resistance is  

 1
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 Putting values from equations 6.1) and (6.6), equation (6.9) becomes  
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The field exponent b is a function of the scattering mechanism and should be negative and 

large in order to satisfy the unequality. When impurity scattering is dominant, the mobility 

rises with increasing field making b positive. When lattice scattering is carrier temperature. 

The first bracket in equation (6-10) must be positive i.e.1 > 2. Electrons must begin in a 

low mass valley and transfer to a high mass valley when they are heated by the electric field. 

The maximum value of this term is unity i.e. 1 ≫2. The factor 
dE

dn1 in the second bracket 

must be negative. This quantity represents the rate of the carrier density with field at which 

electrons transfer to the upper valley and depends on differences between electron densities, 

electron temperature and gap energies in the two valleys.  

6.2.1 Small Signal Limit:  

The transferred electron mechanism in n-GaAs under consideration creats the two streams. 

One dimensional model and the response of such medium to a periodic perturbation of the 

type exp j(t −kz) is assumed. The field dependence of n1 and n2 is assumed of the following 

form:  
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Where E0 is the applied dc electric field, Et is the threshold electric field and a and b are 

appropriate constants, with b≫1. Hence, as E0/E1 is increased, more and more electrons are 

transferred from the lower to the higher energy valley of the conduction band.  

At a given applied electric filed E0 such that E0/E1 >1, there are significant numbers of 

electrons in both valleys, drifting with velocities v1 and v2 where v1 ≫v2.  Hence we have 

two-stream system consisting of electrons in n-GaAs solid state plasma. The response of 

such a system to a periodic perturbation is given by the dispersion relation for two streams 

as  
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Where plasma frequency of electrons in the lower valley of conduction band  
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and plasma frequency of electrons in the upper valley of conduction band 
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The subscript 1 refers to quantities in the lower valley and the subscript 2 refers to quantities 

in the upper valley where n1 and n2 are given by equations (6.11) and (6.12).  
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Symbols v1, v2, 212121 ,,,,, DD  m1 and m2 are drift velocities, recombination 

frequencies, collision frequencies, diffusion constants and mass of electrons in the lower 

and upper valleys respectively. The equation (6.13) was unstable (or growing) solutions, 

depending on parameters of the system. To make the equation analytically tractable, we 

make some simplifying yet realistic assumptions and thus assume  

 1 =  2 = 0  D1  = D2 = 0  

 1 ≫ , kv1  ( )2

2

22

2  +p  

and as a first approximation, we neglect recombination and diffusion effects. We also 

assume that v2   0, i.e. electrons in the upper valley are treated as a stationary background 

plasma in which the mobile electrons in the lower valley drift. The equation (6.13) then 

reduces to  
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 Diving throughout by  

 
( )












−
−

2

2

2
1





j

p
 

 we have 

 

( )
( )

0

1

1

2

2

2

11

2

1
=













−
−−

−








j
kv

j

p

p
     (6.17)  

 
( )

01
11

2

=
−

−
kv

j
effp




       (6.18) 



Two Stream Instability Due to Transferred Electron Effects in N-Type Gaas Semiconducting Plasma... 

121 

 

where new effective plasma frequency is written as 
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The solution describes a wave with a phase velocity equal to the drift velocity. In case of 2 

= 0, the wave may be either growing or decaying depending on sign of 
2

effp . If 02 
effp , 

space charge growing and in case of 02 
effp  it decays.  

However, in general 2  0, the solution from equation (6.16) becomes 
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Real and imaginary parts of equation (6.22) have to be separated to analyse the quantities 

such as phase velocity and growth rate of space charge wave. Thus equation (6.22) becomes  
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Taking real part  
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Phase velocity of space charge wave is then obtained as  
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Taking imaginary parts of equation (6.23) we have 
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The expression for growth rate is simplified as  
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From equation (6.27) we see that phase velocity vp = /kRe is less than drift velocity v1 of  

electrons. Further it is observed from equation (6.29) that growing wave is possible under 

the condition  

  
2

2

22

2  +p  

According to the energy band theory of the n-type GaAs, data for two valleys in GaAs and 

data for two valley semiconductors are given in table 6.1 and Table 6.2 respectively.  

Table 6.1:  Data for two valleys in GaAs 

Valley Effective Mass 

Me 

Mobility 

 

Separation 

E 

Lower Mel = 0.068 1=8000cm2/V−see E = 0.36 eV 

Upper Meu = 1.2 u =180cm2/V−see E = 0.36 eV 

Table 6.2: Data for two-valley semiconductor 

Semiconductor Gap energy 

(at 300
0
K) 

Eg (eV) 

Separation energy 

between two valleys 

E (eV) 

Threshold 

field Eth 

(KV/cm) 

Peak 

velocity 

vp 

(10
7
 

cm/s) 

Ge 0.80 0.18 2.3 1.4 

GaAs 1.43 0.36 3.2 2.2 

InP 1.33 0.60 

between M & L. 

0.80 between U & L  

10.5 2.5 

CdTe 1.44 0.51 13.0 1.5 

InAs 0.33 1.28 1.60 3.6 

InSb 0.16 0.41 0.6 5.0 
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6.2.2 Strong Signal Limit: 

We consider again a uniform n-type Gallium Arsenide sample with ohmic contacts at both 

the end surfaces. When a small voltage is applied to the diode, the electric field and 

conduction current density are uniform through the diode. At low voltage the GaAs is 

ohmic, since the drift velocity of the electrons is proportional to the electric field. The 

conduction current density in the specimen is given by 

 J = E = V/L = v      (6.30) 

Where 

J  =  Conduction current density 

 =  Conductivity 

E = Electrict field in the X-direction 

L = Length of the diode 

V  = Applied Voltage 

 = Charge density 

v = Drift velocity 

In the n-type GaAs diode the current is carried by majority free electrons that are drifting 

through a background of fixed positive charge. The positive charge, which is due to impurity 

atoms that have donated an electrons (donors), is sometimes reduced by impurity atoms that 

have accepted an electrons (donors).  

As long as the fixed charge is positive, the semiconductor is n-type, since the principal 

(majority) carriers are the negative charges. The density of donor less the density of 

acceptors is termed doping. When the space charge is zero, the carrier density is equal to 

the doping.  
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When the applied voltage is above the threshold value, which was measured at about 400 

V/cm times the thickness of the GaAs diode, a high field domain is formed near the cathode 

that reduces the electric field in the rest of the material and causes the current to drop to 

about two-thirds of its maximum value. For a constant voltage V an increase in the electric 

field within the specimen must be accompanied by decrease in the electric field in the rest 

of the diode.  

The high field domain then drifts with the carrier stream across the electrodes and disappears 

at the anode contact. When the electric field increases, the electron drift velocity i.e. current 

density decreases and the GaAs exhibits negative resistance Figure (6.1a). 

Specifically, it is assumed that at point A [Figure (6.1b)] there exists an excess or 

accumulation of negative charge that could be caused by a random noise fluctuation or 

possibly by a permanent non-uniformity in doping in the n-type GaAs diode. An electric 

field is then created by the accumulated charges [Figure (6.1d)].  

The field to the left of point A is lower than that to the right. If the diode is biased at point 

EA [Figure 6.1a)], this situation implies that the carriers (current) flowing into point A are 

greater than those flowing out of A, thereby increasing the excess negative space charge at 

A.  

Furthermore, when the electric field to the left of point A is lower than it was before, the 

field to right is then greater than the original one resulting in an even greater space charge 

accumulation.  

This process continues until the low and high fields both reach values outside the differential 

negative- resistance region and settle at points 1 and 2 in [Figure (6.1a)] where the currents 

in the two field regions are equal.  

As a result of this process, a tavelling space- charge accumulation is formed. This process, 

of course, depends on the condition that the number of electrons insides the crystal is large 

enough to allow the necessary amount of space charge to be built up during the transit-time 

of the space charge layer.  
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The specimen under consideration is an n-type GaAs, with the concentrations of free 

electrons ranging from 1014 to 1017 per cubic centimeter at room temperature. Its typical 

dimensions are 150150m in cross section and 30 m  long.  

During the early stages of space-charge accumulation, the time rate of growth of the space 

charge layers is given by  

 Q (x,t)  = Q (x−vt, O)   exp ten n0    (6.31) 

 Q (x,t)  = Q (x−vt, O)   exp 








d

t


 

 where 
n

d
en 


0


=


=  is the magnitude of the negative dielectric relaxation 

time, n0 is doping concentration,  is semiconductor dielectric permittivity, n is negative 

mobility, e is electronic charge and  is conductivity.  

If equation (6.31) remains valid throughout the entire transit time of the space charge layer, 

the factor of maximum growth is given by  

 Growth rate =     (6.32)  

 If x = 
v

eLn n



0
 then  

 Growth rate = exp () = exp 
dv

L


 

In equation (6.32) the layer is assumed to start at the cathode at t=0,      = 0, and arrive at 

the anode at t = L/v and X = L. For a large space- charge growth, this factor must be larger 

than unity. This means that  
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ne

v
Ln




0          (6.33) 

When an electric field of a certain range is applied to a multivalley semiconductor 

compound such as the n-type GaAs, a decrease in drift velocity with increasing field in 

certain range can lead to the formation of a high field domain for microwave generation and 

amplification. It moves from a high field domain the cathode to the anode. The frequency 

of oscillation is given by the relation  

          

          (6.34) 

Where Vdom is the domain velocity and Leff is the effective length that domain travels from 

the time it is formed until the time that a new domain begins to form.  

6.3 Result and Discussion: 

In case of small signal limit equations (6.27) and (6.29) were computed for two conditions  

(i) bias near threshold where 

   p1 = 86.41010Hz 

 and   p2 = 20.51010Hz 

(ii) high bias where 

   p1 = 8.641010Hz 

   p2 = 29.11010Hz 

Variation of phase velocity with lower valley electron drift velocities is shown in Figures. 

(6.2) and (6.3) for near threshold and high bias conditions.  

eff

dom

L

V
f =
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It is found that with increase in drift velocity, phase velocity increases although the two are 

nearly equal. Phase velocity is always found less than lower valley electron drift velocities. 

 Figures (6.4) and (6.5) show the variation of wave growth rate with lower valley electron 

drift velocities for different collision frequencies near threshold and high bias conditions.  

It has been observed that growth rate decreases with lower valley electron drift velocities. 

For lower collision frequencies with curve is more steep whereas for higher collision 

frequencies the changes in growth rate is small. 

Figureure (6.6) and (6.7) show the variation of growth rate with upper valley electron 

collision frequency near threshold and high bias conditions. Growth rate values near 

threshold are found much higher than the values computed for high bias condition.  

It is observed from the graph that growth rate decreases with upper valley electron collision 

frequency and becomes zero. On further increasing collision frequency. attenuation of wave 

takes place.  

In case of strong signal limit, the equation (6.32) has been computed for appropriate GaAs 

parameters to analyse the space charge growth. Parameters taken for calculations are as  

   = 0.L = 8.854  10−12 13.1  Farad/m 

 e = 1.6  10−19 Coulomb 

 vd = 2.5 105m/sec 

 n = 0.015m2/v.s 

 L = 3 10−5m 

Variation of growth rate with varying doping concentration in the rage 1020/m3 to 1023/m3 

has been depicted in Table 6.3. It is found from the table that the space charge growth 

increases exponentially with the doping concentration of electrons.  
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Figure 6.1: Formation of an Electron Accumulation Layer in GaAs. 
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Figure 6.2: Variation of Phase Velocity With Lower Valley Electron Drift Velocity 

Near Threshold. 
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Figure 6.3: Variation of phase velocity with lower valley electron drift velocity for high 

bias.  
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Figure 6.4: Variation of growth rate with lower valley electron drift velocity near 

threshold.  
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Figure 6.5: Variation of growth rate with lower valley electron drift velocity for high 

bias. 
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Figure 6.6: Variation of growth rate with upper valley electron collision frequency 

near threshold.  
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Figure 6.7: Variation of growth rate with upper valley electron collision frequency for 

high bias. 

Table 6.3: Space charge Growth rate for different electron concentration 

n0(per m3) x Growth rate 

1019 0.025 1.025 

1020 0.248 1.281 

1021 2.483 11.980 
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Appendix 

Einstein (1907) for the first time initiated the study of lattice dynamics of solids. He assumed 

that each atom or molecule in a crystal behaved as a harmonic oscillator vibrating with a 

fixed frequency. All oscillators were supposed to vibrate independently without interaction 

with others. Based on this hypothesis, Einstein formulated his specific heat theory.  

This theory could explain the decrease in specific heat with decreasing temperature, but it 

was found that the decrease predicted by the theory was more rapid than what was observed. 

Later on many workers studied the lattice waves in metals. Narayan et.al. (1991) and 

Narayan and Singh (1996) proposed a phenomenological model to study lattice waves in 

noble metals. We have modified Kreb's model and out proposed model is in equilibrium 

under zero external stress and gives correct expression for Cauchy discrepancy.  

Large scale theoretical and experimental efforts have been focused on the computation of 

cubic and quartic anharmonic contributions to Debye- Waller factors. Many workers studied 

the Debye- Waller factors of FCC metals which agreed satisfactorily with experimental 

observations only upto a certain temperature and thereafter deviation in theoretical and 

experimental value occurs. Later on it was studied that the deviation is due to the neglect of 

anharmonic effects. Narayan (1989) studied the anharmonicity for Debye-Waller factors of 

FCC metals by the inclusion of quartic anharmonic contributions to the Debye- Waller 

exponent 2W alongwith the harmonic contributions and the thermal expansion correction.  

Gautam et.al. (1994) studies the lattice waves in transition metals palladium and platinum 

on the basis of lattice dynamical model which considers short range pairwise forces 

effective upto second neighbours, long range screened Coulomb forces on the lines of Krebs 

and describes the ionic lattice to be in equilibrium in a medium of electrons. The present 

modified Krebs model gives an adequate explanation of the dispersion of lattice waves and 

are found to be in a reasonably satisfactory agreement with the experimental values. 

Narayan et.al. (1995) have followed the Willis approach to study the anharmonic 

vibrrational effects on the D-W factors for FCC metals, silver and nickel and found that our 

theoretical values agree well with experimental values.   
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