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Chapter 1 

Chapter 1: General Introduction 

1.1 Introduction: 

Atanassov [1] introduced the concept of Intuitionistic Fuzzy Sets (IFS), which is a 

generalization of the concept of fuzzy set [1]. Basic arithmetic operations of TIFNs are 

defined by Deng-Feng Li in [2] using membership and non-membership values. Basic 

arithmetic operations of TIFNs such as addition, subtraction and multiplication are defined 
by S.Mahapatra & T.K. Roy in [5], by considering the six tuple number itself. Here we have 

developed division operation on six tuple TIFN using α, β- cut method. Most of the authors 

used the membership and non-membership values of TIFNs for ranking. A ratio ranking 
method of TIFN is developed is defined by L.Shen. et. Al in [8]. Scoring function of a fuzzy 

number intuitionistic fuzzy value is defined by X.F.Wang in [9]. We have defined ranking 

of TIFNs using integral value by considering six tuple TIFNs in [6]. 

The aim of this book is to propose division of TIFN using, α, β- cut, score function and 

accuracy function of TIFNs. Based on the score functions we compare two TIFNs and it is 
applied to solve Intuitionistic Fuzzy Variable Linear Programming Problem. An accuracy 

function is developed to defuzzify TIFN. 

1.2 Preliminaries: 

1.2.1 Definition [1]:  

Given a fixed set X = {x1, x2, x3, xn}, an intuitionistic fuzzy set (IFS) is defined as A = 
((xi, tA(xi), fA(xi))/xi  X) Which assigns to each element xi a membership degree tA(xi) and 

a non-membership degree fA(xi) under the condition 0 ≤ tA(xi) + fA(xi) ≤ 1, for all xi  X 

1.2.2 Definition: [5] 

A fuzzy number Ã (a1, a2, a3) is a Triangular Fuzzy Number if its membership function by  

      , a1 ≤ x ≤ a2  

 

   μÃ(x) =  , a2 ≤ x ≤ a3 where a1, a2, a3 are real numbers  

 

    0 , otherwise  

x-a1 

a2-a1 x-a3 

a2-a3 
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1.2.3 Definition [5]:  

(α, β)-Level intervals or (α, β)-cuts 

A set of (α, β) – cut generated by IFS ÃI, where α, β  [0, 1] are fixed numbers such that α 

+ β is defined as ÃI
α, β = {(x, μÃI(x), υÃI(x)): x  X, μÃI(x) ≤ α, υÃI(x) ≤ β, α, β  [0, 1]} 

(α, β)-level interval or (α, β) – cut denoted by ÃIα, β is defined as the crisp set of elements 

of x which belong to ÃI at least to the degree α and which does belong to ÃI at most to the 

degree β. 

1.2.4 Definition:  

A triangular intuitionistic fuzzy number (TIFN) ÃI is an intuitionistic fuzzy set in R with 

the following membership function μÃI(x) and non-membership function υÃI(x) 

     , a1 ≤ x ≤ a2  

 

   μÃ(x) =  , a2 ≤ x ≤ a3  

 

    0 , otherwise  

and  

      , a'1 ≤ x ≤ a2  

 

   υÃ(x) =   , a2 ≤ x ≤ a'3  

 

    1 , otherwise  

Where a1' ≤ a1 ≤ a2 ≤ a3≤ a3 and   

μÃI(x) + υÃI(x) ≤ 1, or μÃI(x) = υÃI(x), for all x  R.  

This TIFN is denoted by 

ÃI = (a1, a2, a3; a'1, a2, a'3) = {(a1, a2, a3); (a'1, a2, a'3)}    

x-a1 

a2-a1 
x-a3 

a2-a3 

a2- x 

a2-a'1 x-a2 

a'3-a2 
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a1 

b3 

a3 

b1 

a2 

b2 

a'1 

b'3 

a'3 

b'1 

a2 

b2 

ÃI 

BI 

 

Figure 1.1: Membership and Non-Membership Functions of TIFN 

Arithmetic operations of Triangular Intuitionistic Fuzzy Number based on (α, 

β) – cuts method: [5] 

A. If ÃI = {(a1, a2, a3); (a'1, a2, a'3)} and BI = {(b1, b2, b3); (b'1, b2, b'3)} are two TIFNs, 

then their sum  
B. ÃI + BI = {(a1 + b1, a2 + b2, a3 + b3); (a'1+b'1, a2 + b2, a'3+b'3)} is also a TIFN. 

C. If ÃI = {(a1, a2, a3); (a'1, a2, a'3)} and BI = {(b1, b2, b3); (b'1, b2, b'3)} are two TIFNs, 

then   
D. ÃI - BI = {(a1 - b1, a2 - b2, a3 - b3); (a'1-b'1, a2 - b2, a'3-b'3)} is also a TIFN.  

E. If ÃI = {(a1, a2, a3); (a'1, a2, a'3)} and BI = {(b1, b2, b3); (b'1, b2, b'3)} are two TIFNs, 

then their product  
F. ÃI X BI = {(a1b1, a2b2, a3b3); (a'1b'1, a2b2, a'3b'3)} is also a TIFN.  

G. If TIFN ÃI = {(a1, a2, a3); (a'1, a2, a'3)} = {(a1, a2, a3); (a'1, a2, a'3)}  and y = ka (with 

k > 0) then yI = kÃI is a TIFN  {(ka1, ka2, ka3); (ka'1, ka2, ka'3)}. 

H. If TIFN ÃI = {(a1, a2, a3); (a'1, a2, a'3)} = {(a1, a2, a3); (a'1, a2, a'3)}  and y = ka (with 

k < 0) then yI = kÃI is a TIFN  {(ka3, ka2, ka1); (ka'3, ka2, ka'1)}. 

1.3 Proposed Division of Two Tifns Based On (Α, Β) – Cuts Method:  

If ÃI = {(a1, a2, a3); (a'1, a2, a'3)} and BI = {(b1, b2, b3); (b'1, b2, b'3)} are two positive TIFNs, 

then  

 

 is also a TIFN,     = {(       ,      ,     ) (      ,    ,  )} 

 

Proof: Let z = 
𝑥

𝑦
 be the transformation with the membership functions and non-membership 

functions of TIFNs.  

Then ZI =    can be found by (α, β) – cuts method: 

 

ÃI 

BI 

ÃI 

BI 



An Introduction to Fuzzy Linear Programming Problems 

4 

 

ÃIα 

BIα 

[a1 + α (a2 – a1), a3 – α (a3 – a2)] 

[b1 + α (b2 – b1), b3 – α (b3 – b2)] 

[a1 + α (a2 – a1), a3 – α (a3 – a2)] 

[b3 + α (b3 – b2), b1 – α (b2 – b1)] 

a1 + α (a2 – a1) 

b3 + α (b3 – b2) 

a3 + α (a3 – a2) 

b1 + α (b2 – b1) 

  b3x – a1 

(a2 – a1) + (b3 – b2)x 

  a3 – b1x 

(a3 – a2) + (b2 – b1) x 

• α – cut for membership function of ÃI is [a1 + α (a2 – a1), a3 – α (a3 – a2)], α  [0, 

1] i.e., x  [a1 + α (a2 – a1), a3 – α (a3 – a2)] 

• α – cut for membership function of BI is [b1 + α (b2 – b1), b3 – α (b3 – b2)], α  [0, 
1] i.e., y  [b1 + α (b2 – b1), b3 – α (b3 – b2)] 

To calculate division of triangular intuitionistic fuzzy numbers ÃI & BI, we first divide the 

α-cuts of ÃI & BI using interval arithmetic  

 

   =    

 

   

   =    

 

To find the membership function μÃI/BI(x), we equate x both the first and second component, 

which gives  

 

  x =    and x =        

 

Now expressing α in terms of x and setting α = 0 and α = 1, we get  

 

        , a1/b3 ≤ x ≤ a2/b2 

   μÃI/BI(x) =   

       , a2/b2 ≤ x ≤ a3/b1 

 

• β – cut for non-membership function of ÃI is [a2 + β (a2 – a'1), a2 + β (a'3 – a2)], β  
[0, 1] i.e., x  [a2 – β (a2 – a'1), a2 + β (a'3 – a2)] 

• β – cut for non-membership function of BI is [b1 – β (b2 – b'1), b2 + β (b'3 – b2)], β 

 [0, 1] i.e., y  [b2 – β (b2 – b'1), b2 + β (b'3 – b2)] 
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ÃIβ 

BIβ 

[a2 - β (a2 – a'1), a2 + β (a'3 – a2)] 

[b2 - β (b2 – b'1), b2 + β (b'3 – b2)] 

[a1 - β (a2 – a'1), a2 + β (a'3 – a2)] 

[b2 + β (b'3 – b2), b2 – β (b2 – b'1)] 

a2 - β (a2 – a'1) 

b2 + β (b'3 – b2) 

a2 + β (a'3 – a2) 

b2 - β (b2 – b'1) 

  a2 – b2x 

(a2 – a'1) + (b'3 – b2)x 

  b2x – a2 

(a'3 – a2) + (b2 – b'1) x 

To calculate division of triangular intuitionistic fuzzy numbers ÃI and BI, we now divide 

the β-cuts of ÃI & BI using interval arithmetic 

 

   =    

 

   

   =    

 

To find the membership function υÃI/BI(x), we equate x both the first and second component, 

which gives  

 

  x =    and x =        

 

Now expressing β in terms of x and setting α = 0 and β = 1, we get  

 

            , a'1/b'3 ≤ x ≤ a2/b2 

   υÃI/BI(x) =   

       , a2/b2 ≤ x ≤ a'3/b'1 

 

Hence the division rule is proved for membership and non-membership functions.  

Thus  

ÃI/BI = {(a1/b3, a2/b2, a3/b1), (a'1/b'3, a2/b2, a'3/b'3)} is also a TIFN. 

1.4 Proposed Score Function and Accuracy Function: 

Let Ã = {(a1, a2, a3); (a'1, a2, a'3)} be a TIFN, then we define a Score function for membership 

and non-membership values respectively as  
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a2 +2a2 + a3 

4 

a'2 +2a2 + a'3 

4 

(a2 +2a2 + a3) + (a'2 +2a2 + a'3) 

    8 

S(ÃIα) + S(ÃIβ) 

2 

S(BIα) + S(BIβ) 

2 

 

S(ÃIα) =    & S(ÃIβ) =    .  

 

Let Ã = {(a1, a2, a3); (a'1, a2, a'3)} be a TIFN, then we define  

 

(ÃI) =      ,                    

 

an accuracy function of ÃI, to defuzzify 

the given number. 

1.4.1 Ranking Using Score Function: 

Let Ã = {(a1, a2, a3); (a'1, a2, a'3)} and B = {(b1, b2, b3); (b'1, b2, b'3)} be two TIFNs and 

S(ÃIα), S(ÃIβ) & S(BIα), S(BIβ) be the scores of ÃI & BI respectively. Then 

A. If S(ÃIα) ≤ S(BIα) & S(ÃIβ) ≤ S(BIβ), then ÃI < BI 
B. If S(ÃIα) ≥ S(BIα) & S(ÃIβ) ≥ S(BIβ), then ÃI > BI 

C. If S(ÃIα) = S(BIα) & S(ÃIβ) = S(BIβ), then ÃI = BI 

1.4.2 Theorem: 

Let ÃI & BI be any two TIFNs.  

Then 

S(ÃIα) ≤ S(BIα) & S(ÃIβ) ≤ S(BIβ) → H(ÃI) ≤ H(BI) 

Proof: Since S(ÃIα) ≤ S(BIα) & S(ÃIβ) ≤ S(BIβ) 

We get S(ÃIα) + S(ÃIβ) ≤ S(BIα) + S(BIβ) 

 

i.e.,     ≤    , i.e., H(ÃI) ≤ H(BI).  

 

Hence the proof. 



General Introduction 

7 

 

1.5 Intuitionistic Fuzzy Linear Programming: 

Linear Programming with Triangular Intuitionistic Fuzzy Variables is defined in [4] as 

(IFLP)  

max ZI = ∑ c𝑛
𝑗=1

I
j x

I
j Subject to  ∑ a𝑛

𝑗=1
I
ij x

I
j ≤ bI

i  

i = 1, 2, …m, j = 1, 2, ….m, where ÃI = (ãI
ij), c

I, bI, xI are (m x n), (1 x n), (m x 1), (n x 1) 

intuitionistic fuzzy matrices consisting of Triangular Intuitionistic Fuzzy Numbers (TIFN). 

Standard Form [6] The objective function should be of maximization form 

(IFLP) max ZI = ∑ 𝐜𝒏
𝒋=𝟏

I
j x

I
j …………………………………. (1.5.1) 

Subject to 

ãI
11x

I
1 + ãI

12x
I
2 + ………………………. + ãI

1n x
I
n + xI

n+1 = bI
1 

ãI
21x

I
1 + ãI

22 + …………………………. + ãI
2n x

I
n + xI

n+2 = bI
2 

…. ……………………………………………………………  (5.2) 

ãI
m1 x

I
1 + ãI

22 x
I
2 + …………………. + ãI

mnx
I
n + xI

n+m = bI
m 

xI
1, x

I
2, …………, xIn, xI

n+1, x
I
n+m ≥ 0 …………………… (5.3) 

Intuitionistic Fuzzy Optimum Feasible Solution [6]: 

Let X be the set of all intuitionistic fuzzy feasible solutions of (5.1). An intuitionistic fuzzy 
feasible solution xI

0  X is said to be an intuitionistic fuzzy optimum solution to (5.1), if 

cIxI
0 ≥ cIxI for all xI  X, where cI = (cI

1, c
I
2, c

I
3, ……. cIn), and cIxI = cI

1x
I
1 + cI

2x
I
2 + 

…………. + cI
nx

I
n. 

1.6 Numerical Illustration: 

Solve Max zI = 5IxI
1 + 3IxI

2 

Subject to 4xI
1 + 3IxI

2 ≤ 12I, 1IxI
1 + 3IxI

2 ≤ 6I, xI
1, x

I
2 ≥ 0 where  

cI
1 = 5I = {(4, 5, 6); (4, 5, 6.1)}  cI

2 = 3I = {(2.5, 3, 3.5); (2, 3, 3.5)} 

ãI
11 = 4I = {(3.5, 4, 4.1); (3, 4, 5)} ãI

12 = 3I = {(2.5, 3, 3.5) ;(2.4, 3, 3.6} 

ãI
21 = 1I = {(0.8, 1, 2); (0.5, 1, 2.1)} ãI

22 = 3I = {(2.8, 3, 3.2); (2.5, 3, 3.2)} 

bI
1 = 12I = {(11, 12, 13); (11, 12, 14)}  bI2 = 6I = {(5.5, 6, 7.5) ;(5,6,8.1)} 
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Solution: Rewriting the problem in standard form: 

Solve Max zI = 5IxI
1 + 3IxI

2 

Subject to 4xI
1 + 3IxI

2 + 1ISI
1 ≤ 12I, 1IxI

1 + 3IxI
2 + 1ISI

2 ≤ 6I, xI
1, x

I
2, S

I
1, S

I
2≥ 0. Hence the 

co-efficient of SI
1, S

I
2 are given by 1I = {(1, 1, 1); (1, 1, 1)} and 0I = {(0, 0, 0); (0, 0, 0)}. 

Initial Iteration: Basic variables are sI1 = 12I, sI
2 = 6I 

    cI
j  5I    3I   0I  0I 

CB BV xI
1 xI

2 sI
1 sI

2 bI ratio 

0I sI
1 4I 3I 1I 0I 12I 12I/4I = 3I 

0I sI
2 1I 3I 0I 1I 6I 6I/1I = 6I 

 zI
j 0I 0I 0I 0I 0I  

 cI
j - z

I
j 5I 3I 0I 0I -  

Intuitionistic fuzzy linear programming problem 

Since all cI
j – zI

j ≥ 0, the solution is not optimal. xI
1 is the entering variable, since the most 

positive value corresponds to the xI
1 column. Then the ratio is calculated. Using the division 

procedure and Scoring function as defined in the sections (2 & 3) of this book, we get the 

following results: 

A. 12I / 4I = {(2.68, 3, 3.71); (2.2, 3, 4.67)} = 3I 

B. 6I / 1I = {(2.75, 6, 9.375); (2.38, 6, 16.2)} = 6I 
C. Score function S(3Iα) = 3.0975 & S(3Iβ) = 3.2175 

D. Score function S(6Iα) = 6.03125 & S(6Iβ) = 7.645 

Since S(3Iα) < S(6Iα) & S(3Iβ) < S(6Iβ), we get 3I < 6I. 

So sI
1 is the leaving variable. 

First Iteration: Basic variables are xI
1 = 3I, sI

2 = 3I 

 cI
j  5I  3I   0I    0I 

CB BV xI
1 xI

2 sI
1 sI

2 bI 

5I xI
1 1I 0.75I 0.25I 0I 3I 

0I sI
2 0I 2.25I -0.25I 1I 3I 

 zI
j 5I 3.75I 1.25I 0I 15I 

 cI
j - z

I
j 0I -0.75I -1.25I 0I - 

Where the Triangular intuitionistic representation for each element based on arithmetic 

operations is listed below: 
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cI
1 = 5I = {(4, 5, 6); (4, 5, 6.1)}   

cI
2 = 3I = {(2.5, 3, 3.5); (2, 3, 3.5)} 

ãI
11 = {(.85, 1, 1.17); (.6, 1, 1.67)} = 1I 

ãI
12 = {(.61, .75, 1); (.46, .75, 1.2)} = 0.75I 

ãI
13 = {(0.24, 0.25, 0.29); (0.2, 0.25, 0.67)} = 0.25I 

ãI
14 = {(0, 0, 0); (0, 0, 0)} = 0I 

bI
1 = {(2.68, 3, 3.71); (2.2, 3, 4.67)} = 3I 

ãI
21 = {(-0.37, 0, 1.15); (-1.17, 0, 1.5)} = 0I 

ãI
22 = {(1.8, 2.25, 2.59); (1.3, 2.25, 2.74)} = 2.25I 

ãI
23 = - {(0.24, 0.25, 0.29); (0.2, 0.25, 0.67)} = -0.25I 

ãI
24 = {(1, 1, 1); (1, 1, 1)} = 1I 

bI
2 = {(1.79, 3, 4.82); (0.33, 3, 5.9)} = 3I 

REPRESENTATION OF EACH ELEMENT IN THE ROW zI
j 

ãI
33 = {(3.4, 5, 7.02); (2.4, 5, 10.18)} = 5I 

ãI
32 = {(2.44, 3.75, 6); (1.84, 3.75, 7.32)} = 3.75I 

ãI
33 = {(0.96, 1.25, 1.74); (0.8, 1.25, 4.08)} = 1.25I 

ãI
34 = {(0, 0, 0); (0, 0, 0)} = 0I 

zI
j = {(10.72, 15, 22.26) ;(8.8, 15, 28.48)} = 15I 

REPRESENTATION OF EACH ELEMENT IN THE ROW cI
j - z

I
j  

ãI
41 = {(-3.02, 0, 2.6); (-6.187, 0, 3.7)} = 0I 

ãI
44 = {(0, 0, 0); (0, 0, 0)} = 0I 

ãI
42 = - {(-0.76, 0.75, 0.76); (-1.66, 0.75, 1.66)} = -0.75I 

ãI
43 = -{(0.96, 1.25, 1.74); (0.8, 1.25, 4.08)} = -1.25I 
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1.7 Conclusion of the Problem: 

Since all the elements in the row cIj – zIj are less than or equal to zero, the solution obtained 

is optimal i.e., Max zI
j = 15I when xI

1 = 3I, xI
2 = 0I, sI

1 = 0I, sI
2 = 3I  
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Chapter 2 

Chapter 2: Generalized Trapezoidal Intuitionistic 

Fuzzy Number Via New Ranking Method 

2.1 Introduction: 

In fuzzy environment, ranking of fuzzy numbers play a vital role in decision making 

problem. In literature, numerous approaches for ranking fuzzy numbers have been 
extensively studied. Several authors namely Abbasbandy (2009); Chen (1985); Chen and 

Chen (2009); Wang and Lee (2008) rank fuzzy numbers by different approaches. The 

concept of fuzzy set theory introduced by Zadeh (1965) was extended to intuitionistic fuzzy 
sets (IFS) by Atanassov (1986). In IFS, degree of non-membership and non-membership 

function up to Decision maker’s (DMs) satisfacition due to insufficient available 

information.  

As a result, there remains an indeterminsitic part in which reluctance perseveres. Therefore, 

intuitionistic fuzzy set theory seems to be more consistent to deal with ambiguity and 
vagueness. In recent past, ranking intuitionistic fuzzy numbers (IFNs) draws the attention 

of several researches.  

Nehi (2010) ranked IFNs based on characteristic values of membership and non-

membership functions of IFN. Ranking of trapezoidal IFNs based on value and ambiguity 
indices were given by De and Das (2012), Rezvani (2012) and many more approaches were 

subsequently developed. 

In 1970, Bellman and Zadeh (1970) introduced the concept of decision making in fuzzy 

environment. The concept of optimization in intuitionistic fuzzy environment was given by 

Angelov (1997).  

One of the important applications of linear programming is in the area of transportation of 
goods and services from several supply centres to several demand centres. The simplest 

transportation model was first presented by Hitchcock (1941) in 1941. Several other 

extensions were successively developed. 

In 1984, Chanas. Et. Al (1984) presented a fuzzy approach to the transportation problem. 

Fuzzy zero-point method is introduced by Pandian and Natarajan (2010), which was 
extended to intuitionistic fuzzy zero-point method by Hussain and kumar (2012) to compute 

optimal solution of transportation problem.  

To the best of our knowledge, till now no one has used generalized trapezoidal intuitionistic 

fuzzy numbers for solving transportation problems. 
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In this book, new ranking method for ordering generalized trapezoidal intuitionistic fuzzy 

numbers (GTRIFNs) is introduced.  

Intuitionistic max- min method and generalized intuitionistic modified distribution method 

is introduced for computing the initial basic feasible solution (IBFS) and optimal solution 

respectively of transportation problem in which the costs are represented by GTRIFNs. 

Rest of the book is organized as follows. Section 2 briefly describes some basic concepts. 

Arithmetic operations over GTRIFNs are defined in section 3.  

A new ranking method for GTRINs and significance of the proposed ranking method over 

existing methods is illustrated in section 4.  

In section 5, mathematical model formulation of intuitionistic fuzzy transportation problem 

and algorithm of proposed methods to solve intuitionistic fuzzy transportation problem is 

illustrated.  

A numerical example is solved in section 6 to demonstrate the efficiency of proposed 

methods. Finally, the book is concluded in section 7. 

2.2 Preliminaries: 

In this section, some basic results related to intuitionistic fuzzy set theory are reviewed. 

Definition 1 (Atanassov, 1999): Let X be a universal set. An Intuitionistic Fuzzy Set (IFS) 

A in X is defined as an object of the form A = {< x, μA(x), υA(x) >: x X} where the 

functions a: X → [0, 1] define the degree of membership and the degree of non-membership 
of the element x X to the set A respectively and for every x X in A, 0 ≤ μA(x) + υA(x) ≤ 

1 holds. 

Definition 2 (Atanassov, 1999): For every common intuitionistic fuzzy subset A on X, 

intuitionistic fuzzy index of x in A is defined as πA(x) = 1 – μA(x)-υA(x). It is also known as 

degree of hesitancy or degree of uncertainty of the element x in A. 

Obviously, for every x X, 0 ≤ πA(x) ≤ 1. 

Definition 3 (Mahapatra and Mahapatra, 2010): An Intuitionistic Fuzzy Number (IFN) ãI is  

a. An intuitionistic fuzzy subset of the real line. 
b. Convex for the membership function μa(x), that is, a (λx1 + (1-λ) x2) ≥ min(μa(x1), 

μa(x2))  x1, x2 R, λ [0, 1]. 

c. Concave for the non-membership function υa(x), that is, a (λx1 + (1-λ) x2) ≤ max(υa(x1), 

υa(x2))  x1, x2 R, λ [0, 1]. 

d. Normal, that is, there is some x0 R such that μa(x0) = 1, υa(x0) = 0. 
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Definition 4 (Mahapatra and Mahapatra, 2010): An intuitionistic fuzzy number ãI = < (a1, 

a2, a3, a4) (ā1, a2, a3, ā4) > is said to be trapezoidal intuitionistic fuzzy number (TRIFN) if its 

membership and non-membership functions are respectively given by 

   

     if a1 ≤ x ≤ a2 

    1  if a2 ≤ x ≤ a3 

  μa(x) =  

     if a3 ≤ x ≤ a4 

   0  otherwise  

    

     if ā1 ≤ x ≤ a2 

    0  if a2 ≤ x ≤ a3 

  υa(x) =  

     if a3 ≤ x ≤ ā4 

   1  otherwise  

 

Definition 5: An intuitionistic fuzzy number ãI = < (a1, a2, a3, a4; ωa) (ā1, a2, a3, ā4; σa) > is 
said to be a generalized intuitionistic fuzzy number (GTRIFN) if its membership and non-

membership function are respectively given by 

    

     if a1 ≤ x ≤ a2 

    ωa  if a2 ≤ x ≤ a3 

  μa(x) =  

     if a3 ≤ x ≤ a4 

   0  otherwise  

x- a1 

a2 – a1 

a4 - x 

a4 – a3 

a2 - x 

a2 – ā1 

a3 - x 

a3 – ā4 

(x- a1) ωa 

a2 – a1 

(a4 – x) ωa 

a4 – a3 



An Introduction to Fuzzy Linear Programming Problems 

14 

 

    

        if ā1 ≤ x ≤ a2 

    σa     if a2 ≤ x ≤ a3 

  υa(x) =  

        if a3 ≤ x ≤ ā4 

   1     otherwise  

 

Where ωa and σa represent the maximum degree of membership and minimum degree of 

non-membership respectively, satisfying 0 ≤ ωa ≤ 1, 0 ≤ σa ≤ 1, 0 ≤ ωa + σa ≤ 1. 

Observation: GTRIFN defined in definition 5 is different from the TRIFNs considered in 
(De and Das 2012), since in (De and Das, 2012) ā1 = a1 and ā4 = a4 but in definition 5, ā1 

and ā4 may not necessarily be equal to a1 and a4 respectively. Also, in Wan (2013); Wu and 

Cao (2013); Shen. et. al (2011), υa(x) = 0 for x < ā1 and x > ā4 but in definition 5, υa(x) = 1 

for x < ā1 and x > ā4. Graphical representation of GTRIFN is illustrated in Figure 2.1. 

 

Figure 2.1: Generalized Trapezoidal Intuitionistic Fuzzy Number (GTRIFN) 

2.3 Arithmetic Operations: 

In a similar way to the arithmetic operations of TRIFNs (De and Das, 2012) and triangular 

IFNs (Li, 2008), arithmetic operations over GTRIFNs are defined as follows. 

Let ãI = < (a1, a2, a3, a4; ωa) (ā1, a2, a3, ā4; σa) > and bI = < (b1, b2, b3, b4; by) (b1, b2, b3, b4; σb) 

> be two GTRIFNs, then 

a2 – x + σa(x-ā1) 

        a2 – ā1 

x - a3 + a (ā4 – x) 

        a3 – ā4 
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   ωa 

ωa-σa+1 

-a2 +x-a (x –ā1) 

       a2 – ā1 

   ωa 

ωa-σa+1 

  x-a1 

a2 – a1 

a2 –x+σa (x –ā1) 

       a2 – ā1 

   ωa 

ωa-σa+1 

(a4 – x) ωa 

a4 – a3 

x - a3 + a (ā4 – x) 

        a3 – ā4 

a. ãI + bI = < (a1 + b1, a2 + b2, a3 + b3, a4 + b4; min (ωa, ωb)) (ā1 + b1, a2 + b2, a3 + b3, ā4 + 
b4; max (σa, σb)) > 

b. ãI - bI = < (a1 - b1, a2 - b2, a3 - b3, a4 - b4; min (ωa, ωb)) (ā1 - b1, a2 - b2, a3 - b3, ā4 - b4; max 

(σa , σb)) > 
c. λãI = < (λa1, λa2, λa3, λa4; λωa) (λā1, λa2, λa3, λā4; λσa) > if λ > 0. 

d. λãI = < (λa4, λa3, λa2, λa1; a) (λā4, λa3, λa2, λā1; λσa) > if λ < 0. 

2.4 Ranking Index of GTRIFN: 

In literature there are various algorithms for ranking IFNs, but most of the algorithms are 

used to rank triangular IFNs or TRIFNs with ā1 = a1 and ā4 = a4 (De and Das, 2012; Das and 
Duha, 2013). So, in order to rank GTRIFN, firstly we define a new single function ρa 

involving both membership and non-membership function of GTRIFN ãI as follows: 

Define a: R → [ 0, ωa] such that 

 

    ρa =      x R 

 

Here, μa(x) and υa(x) are membership and non-membership of GTRIFN ãI, Lemma: ρa = < 

(x, ρa(x)): x R> is trapezoidal non-normal fuzzy number. Proof: Let x R be arbitrary. 

Then,  

  0        if x ≤ ā1, 

x ≥ ā4 

    {           + 1}    if ā1 ≤ x 

≤ a1 

 

      {  a -    + 1}  if a1 ≤ x 

≤ a2  

 

ρa(x) = ωa         if a2 ≤ x ≤ a3 

 

       {      -     + 1} if x3 ≤ x 

≤ a4 

(μa(x) – υa(x) + 1) ωa 

        ωa – σa + 1 
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   ωa 

ωa-σa+1 

-x+a3 +a (ā4 – x) 

       ā4 – a3 

   ωa 

ωa-σa+1 

-a2 +x-σa (x –ā1) 

       a2 – ā1 

   ωa 

ωa-σa+1 

  x-a1 

a2 – a1 

a2 –x+σa (x –ā1) 

       a2 – ā1 

   ωa 

ωa-σa+1 

(a4 – x) ωa 

a4 – a3 

x - a3 + a (ā4 – x) 

        a3 – ā4 

   ωa 

ωa-σa+1 

-x+a3 +σa(ā4 – x) 

       ā4 – a3 

 

    {    + 1}   if a4 ≤ x 

≤ ā4 

Therefore, ρa(x) can be written as  

    q(x)   if ā1 ≤ x ≤ a2 

    ωa    if a2 ≤ x ≤ a3 

   ρa(x) =    

     r(x)   if a3 ≤ x ≤ ā4 

     0   otherwise 

Where q(x) is defined as q(x): [ā1, a2] → [0, ωa] such that 

 

    {           + 1}    if ā1 ≤ x 

≤ a1 

 q(x) =  

      {  ωa -    + 1}  if a1 ≤ x 

≤ a2  

and r(x) is defined as r(x): [a3, ā4] → [0, ωa] such that 

 

       {      -     + 1} if x3 ≤ x 

≤ a4 

   r(x) =  

    {    + 1}   if a4 ≤ x 

≤ ā4 

Here, q(x) is continuous and monotonically increasing function and r(x) is continuous and 

monotonically decreasing function. Also range of ρa(x) lies in [0, ωa]. 

Therefore, ρa = < (x, ρa(x); x R> is non-normal trapezoidal fuzzy number. To rank 

GTRIFNs, firstly we will find the centroid of fuzzy number ρa.  
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y(a2-ā1)(ωa-σa+1)+ā1(1-σa)ωa 

                (1-σa) ωa 

y(ωa-σa+1) (a2-a1) (a2-ā1)-ωa(a4ā4ωa-a4a3ωa-a4ā4σa+a3ā4σa+a4ā4-

a3ā4 

                              (-ā4ωa+a3ωa-a4+a3+a4σa-a3σa)ωa 

  (a1-ā1) (1-σa) ωa 

(ωa-σa + 1) (a2-ā1) 

y(ā4-a3) (ωa-σa+1)-ā4ωa(1-σa) 

                (1-σa) ωa 

y(a4-a3) (ā4-a3) (ωa-σa+1) -ωa(a4ā4ωa-a4a3ωa-a4ā4σa+a3ā4σa+a4ā4-

a3ā4 

                              (-ā4ωa+a3ωa-a4+a3+a4σa-a3σa)ωa 

  (ā4-a4) (1-σa) ωa 

(ωa-σa + 1) (ā4-a3) 

∞ 

-∞ 

∞ 

-∞ a2 

ā1 

a3 

a2 

ā4 

a3 

a2 

ā1 

a3 

a2 

ā4 

a3 

Functions q(x) and r(x) defined in the lemma are both strictly monotone. Let q-1(y): [0, ωa] 
→ [ā1, a2] and r-I(y): [0, ωa] → [a3, ā4] be the inverse functions of q(x) and r(x) respectively. 

Then,  

         

          if 0 ≤ y ≤ 

t 

q-I(y) =   

           

          

 if t ≤ y ≤ ωa 

 

where t =      and  

 

          if 0 ≤ y ≤ 

s 

r-I(y)=  

           

          

 if s ≤ y ≤ ωa 

 

where s =  

 

Since ρa is non-normal trapezoidal fuzzy number, so centroid point (x0, y0) of a fuzzy 

number ρa (based on formula of Wang .et .al, 2006) is given by  

   x0(ρa) = ∫xρa(x)dx / ∫ρa(x)dx 

 

  = ∫xq(x)dx + ∫ xωadx + ∫xr(x)dx / ∫q(x) dx + ∫ ωadx + ∫ r(x)dx 
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(1-σa) (-ā
2
1-a

2
2 –ā1a2+a2

3 +a3ā4+ā2
4) +ωa (-a

2
1-a

2
2-a1a2+a2

3+a3ā4+ā2
4 

             3{(1-σa) (-ā1-a2+a3+ā4) +ωa(-ā1-a2+a3+ā4)} 

ωa 

0 

ωa 

0 

  a4a3 - a1a2 

(a4+a3) -(a1+a2) 

       a3 - a2 

(a4+a3) -(a1+a2) 

a1+a2+a4  

      3 

ωa 

 3 

 

=            

 (1) 

 

y0(ρa) = ∫ y(r-I(y) – q-I(y)) dy / ∫ (r-I(y)-q-I(y)) dy     (2) 

 

Remark 1: If μa(x) = 1-υa(x), then ā1=a1, ā4=a4, ωa=1-σa 

Also, ρa = <x μa(x): x R) >. Thus, ρa reduces to a non-normal trapezoidal fuzzy number 
with membership function μa(x) (as defined in definition 5). By substituting the values in 

the above centroid formula, we get  

 

 x0(ρa) = 1/3 [ a1 + a2+ a3+ a4-     ] 

 

   y0(ρa) = ωa/3 [ 1 +    ], which is exactly the 

same  

centroid formula of a trapezoidal non-normal fuzzy number with membership function 

μa(x), as derived by Wang.et.al (2006). 

Remark 2: Let μa(x) = 1 –υa(x) and a2 = a3 then ā1 = a1, ā4 = a4, ωa = 1 – σa. 

Also, ρa reduces to a non-normal triangular fuzzy number and by substituting the values, we 

get  

 

       x0(ρa) =   , y0(ρ0) =  , which is the centroid formula of a  

triangle.  

We employ Wang and Lee, (2008) method for the centroid of ρa (defined in 1 and 2) to 

order GTRIFNs. Then,  

a. If x0(ρa) > x0(ρb) then ãI > bI 

b. If x0(ρa) < x0(ρb) then ãI < bI 

c. If If x0(ρa) = x0(ρb), then ãI > bI 
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 n 

j=1 

m 

i=1 

if x0(ρa) > y0(ρb) then ãI > bI; 

  else if x0(ρa) < y0(ρb) then ãI < bI; 

  else if x0(ρa) = y0(ρb) then ãI = bI. 

Here, we use x0 value as ranking index. y0 value is used only to compare GTRIFNs when 

their x0 value are same. Significance of the proposed ranking method over existing methods 

a. Algorithm given by De and Das (2012); Das and Duha (2013) cannot be used to rank 

those GTRIFNs where ā1 ≠ a1 or ā4 ≠ a4 but the proposed method can be used to rank 

such GTRIFNs. 

b. Algorithm described in (Nayagam et.al. 2008) fails if membership score of ãI ≤ 
membership score of bI and non-membership score of ãI ≤ non-membership score of bI, 

where ãI and bI are IFNs. But in the proposed method, we overcome this situation by 

defining a single function ρa involving both membership and non-membership function 
of GTRIFN ãI. 

c. Most of the existing methods discussed in (Dubey and mehra, 2011); (Li, 2010) and 

many more can be used only for Triangular IFNs. These methods cannot be used to rank 

GTRIFNs. But our method can be used to rank GTRIFNs as well as triangular IFNs by 

taking a2 = a3. 

2.5 Mathematical Formulation of Intuitionistic Fuzzy Transportation 

Problem: 

Consider an intuitionistic fuzzy transportation problem (IFTP) with m origins and n 

destinations.  

Let cI
ij be the intuitionistic fuzzy (IF) cost of transporting one unit of the product form ith 

origin to the jth destination.  

Here, the cost cI
ij (i=1, 2, ………, m, j= 1, 2, ………., n) are represented by GTRIFNs. Let 

ai be the total availability of the product at the ith origin. Let bj be the total demand of the 

product at jth destination.  

Let xij be the quantity transported from ith origin to the jth destination so as to minimize the 

total IF transportation cost.  

Therefore, IFTP in which the DM is uncertain about the precise values of transportation 

cost from ith origin to the jth destination but sure about the supply and demand of the product 

can be formulated as  

 

   Minimize   ∑  ∑   ∑ cI
ijxij   
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 n 

j=1 

m 

i=1 

m 

i=1 

 n 

j=1 

 n 

j=1 

m 

i=1 

 n 

j=1 

m 

i=1 

m 

i=1 

 n 

j=1 

 

  Subject to ∑ xij ≤ ai    i = 1, 2, ……., m 

 

    ∑ xij ≥ bj    j = 1, 2, ……, n 

 

   xij ≥ 0     i, j. 

if ∑ ai =   ∑ bj , then IFTP is said to be balanced, otherwise it is said to be  

 

 

unbalanced IFTP. 

The primal of the balanced IFTP can be written as  

 

   Minimize   ∑  ∑   ∑ cI
ijxij   

 

  Subject to ∑ xij ≤ ai    i = 1, 2, ……., m 

 

    ∑ xij ≥ bj    j = 1, 2, ……, n 

 

   xij ≥ 0     i, j. 

The dual of the above primal problem can be written as  

 

Maximize   ∑aiui   ∑bjυ
I
j 
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m 

i=1 

 n 

j=1 

m 

i=1 

 n 

j=1 m 

i=1 

 n 

j=1 

m 

i=1 

 n 

j=1 

m 

i=1 

 n 

j=1 

m 

i=1 

 n 

j=1 

Subject to uI
i υI

j unrestricted 

Where uI
i and υI

j are the intuitionistic fuzzy dual variables associated with the ith row and jth 
column respectively. In IBFS of a primal problem, m + n – 1 variable are basic and the 

remaining variables are non-basic. 

 Table no 2.1: Tabular form of IFTP 

 1 2  n Supply 

1 cI
11 cI

12 cI
1n a1 

2 cI
21 cI

22 cI
2n a2 

m cI
m1 cI

m2 cI
mn am 

Demand b1 b2 bn ∑ am
𝑖=1 i = ∑ b𝑛

𝑗=1 j 

2.5.1 Proposed IF Max-Min Method for Finding Initial Basic Feasible Solution 

(IBFS) of IFTP:  

In this section, IF Max-Min method is proposed to compute initial basic feasible of IFTP. 

The steps of the proposed method are as follows. 

Step 1: Set up the formulated intuitionistic fuzzy linear programming problem into tabular 

form known as intuitionistic fuzzy transportation table (IFTP).  

Represent the approximate cost by GTRIFNs. 

Step 2: Examine whether ∑ ai  = ∑bj or ∑ ai ≠ ∑by. 

Case (I): if  ∑ai = ∑bj . Go to step 3. 

 

Case (II): if  ∑ai > ∑bj, then introduce a dummy column having all its cost as 

 

 zero GTRIFNs. 

Assume  ∑ai - ∑bj as the demand at this dummy destination. Go to step 3. 
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m 

i=1 

 n 

j=1 

m 

i=1 

 n 

j=1 

Case (III): if  ∑ai - ∑bj, then introduce dummy row having all its cost zero  

GTRIFNs. 

Assume  ∑bj - ∑ai as availability of the product at the dummy source. Go to  

step 3. 

Step 3: Take the first row and choose its smallest entry (cost) and write it in the front of 
first row on the right. This is the intuitionistic fuzzy penalty of first row. Similarly, compute 

the intuitionistic fuzzy penalty of each row and write them in front of each corresponding 

row. 

In the similar way, compute intuitionistic fuzzy penalty computed in step 3 and determine 

the cost for which this corresponds. Let it be cI
ij. Find xij = min (ai, bj). 

Case (I): If min (ai, bj) = ai, then allocate xij = ai in the (i, j) th cell of m x n IFTT. Ignore the 
ith row to obtain a new IFTT of order (m – 1) x n. Replace bj by bj – ai in obtained IFTT. Go 

to step 5. 

Case (II): If min (ai, bj) = bj, then allocate xij = bj in the (i, j) the cell of m x n IFTT. Ignore 

the jth column to obtain a new IFTT of order m x (n – 1). Replace ai by ai - bj in obtained 

IFTT. Go to step 5. 

Step 5: Calculate the fresh penalties for the reduced IFTT as in step 4. Repeat step 4 until 

IFTT is reduced into IFTT of order 1 x 1. 

Step 6: Allocate all xij in the (i, j) th cell of the given IFTT. 

Step 7: The IBFS and initial intuitionistic fuzzy transportation cost are xij and  

 

 ∑ ∑cI
ijxij respectively. 

 

2.5.2 Generalized Intuitionistic Modified Distribution Method (GIMDM) for 

Finding Optimal Solution: 

In this section, generalized intuitionistic modified distribution method is proposed to find 

the optimal solution of IFTP. The proposed algorithm is an extension of classical approach. 

Algorithm of GIMDM is illustrated as follows. 

Step 1: Find IBFS by proposed IF Max-Min method. 
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Step 2: Calculate intuitionistic fuzzy dual variables uI
i and υI

j for each row and column 

respectively, satisfying uI
j  υI

j = cI
ij for each occupied cell. 

To start with, take any uI
i or υI

j as (-1, 0, 0, 1; 1) (-1, 0, 0, 1; 0) 

Step 3:  For unoccupied cells, find opportunity cost dI
ij by the relation dI

ij = cI
ij – (uI

i  υI
j). 

Step 4: Calculate the x0 value of each dI
ij. 

Case (I): If x0 (d
I
ij) ≥ 0 for all unoccupied cells, then obtained IBFS is intuitionistic fuzzy 

optimal solution. 

Case (II): If at least one x0 (d
I
ij) < 0, then IBFS is not optimal. Go to step 5. 

Step 5: Select the unoccupied cell corresponding to which x0 value of dI
ij is most negative. 

Step 6: Construct the closed loop as follows: 

Start the closed loop with the selected unoccupied cell (in Step 5) and move horizontally 

and vertically with corner cells occupied and return to selected unoccupied cell to complete 

the loop. Assign + and – sign alternatively at the corners loop, by assigning the + sing to the 

selected unoccupied cell first. 

Step 7: Find the minimum allocation value from the cells having – sign. 

Step 8: Allocate this value to the selected unoccupied cell and add it to the other occupied 

cells having + sign and subtract it to the other occupied cell having – sign. 

Step 9: Allocation in step 8 will yield an improved basic feasible solution. 

Step 10: Test the optimality condition for improved basic feasible solution. The process 

terminates when x0(d
I
ij) ≥ 0 for all unoccupied cells. 

2.6 Numerical Examples: 

Consider the following 3 x 3 IFTT in which the costs are represented by GTRIFNs 

Table no. 2.2: 

 D1 D2 D3 Supp

ly 

S1 (2,4,8,15;0.6) 
(1,4,8,18;0.3) 

(3,5,7,12;0.5) 
(1,5,7,15;0.3) 

(2,5,9,16;0.7) 
(1,5,9,18;0.3) 

25 

S2 (2,5,8,10;0.6) 

(1,5,8,12;0.2) 

(4,8,10,13;0.4) 

(3,8,10,15;0.3) 

(3,6,10,15;0.8) 

(2,6,10,18;0.2) 

30 
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3 

i=1 

 3 

j=1 

 D1 D2 D3 Supp
ly 

S3 (2,7,11,15;0.5)(1,7,11,

18;0.3) 

(5,9,12,16;0.7)(3,9,12,

19;0.2) 

(4,6,8,10;0.6)(3,6,8,

12;0.3) 

40 

Dema
nd 

35 45 15  

 

Since ∑ai  = ∑ bj = 95, the problem is balanced. 

By first iteration, we have Table no. 2.3: 

 D1 D2 D3 Supp
ly 

S1 (2,4,8,15;0.6) 

(1,4,8,18;0.3) 

(3,5,7,12;0.5) 

(1,5,7,15;0.3) 

(2,5,9,16;0.7) 

(1,5,9,18;0.3) 

25 

S2 (2,5,8,10;0.6) 
(1,5,8,12;0.2) 

(4,8,10,13;0.4) 
(3,8,10,15;0.3) 

(3,6,10,15;0.8) 
(2,6,10,18;0.2) 

30 

S3 (2,7,11,15;0.5)(1,7,11,

18;0.3) 

(5,9,12,16;0.7)(3,9,12,

19;0.2) 

(4,6,8,10;0.6)(3,6,8,

12;0.3) 

25 

Dema
nd 

35 45 -  

Therefore, after first iteration, IFTT reduces to Table no. 2.4: 

 D1 D2 Supply 

S1 (2,4,8,15;0.6) (1,4,8,18;0.3) (3,5,7,12;0.5) (1,5,7,15;0.3) 25 

S2 (2,5,8,10;0.6) (1,5,8,12;0.2) (4,8,10,13;0.4) (3,8,10,15;0.3) 30 

S3 (2,7,11,15;0.5) (1,7,11,18;0.3) (5,9,12,16;0.7) (3,9,12,19;0.2) 25 

Demand 35 45  

Finally, IBFS is Table no. 2.5: 

 D1 D2 D3 Supp

ly 

S1 (2,4,8,15;0.6) 
(1,4,8,18;0.3) 

(3,5,7,12;0.5) 
(1,5,7,15;0.3) 

(2,5,9,16;0.7) 
(1,5,9,18;0.3) 

25 

S2 (2,5,8,10;0.6) 

(1,5,8,12;0.2) 

(4,8,10,13;0.4) 

(3,8,10,15;0.3) 

(3,6,10,15;0.8) 

(2,6,10,18;0.2) 

30 

S3 (2,7,11,15;0.5)(1,7,11,

18;0.3) 

(5,9,12,16;0.7)(3,9,12,

19;0.2) 

(4,6,8,10;0.6)(3,6,8,

12;0.3) 

40 

Dema

nd 

35 45 15  

 

15 

10 

25 

20 

25 15 
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Thus, IBFS is x12 = 25, x21 = 10, x22 = 20, x31 = 25, x33 = 15, and the transportation cost is  

25(3, 5, 7, 12; 0.5) (1, 5, 7, 15; 0.3) 10((2, 5, 8, 10; 0.6) (1, 5, 8, 12; 0.2) 20(4, 8, 10, 13; 
0.4) (3, 8, 10, 15; 0.3) 25(2, 7, 11, 15; 0.5) (1, 7, 11, 18, 0.3) 15(4, 6, 8, 10; 0.6) (3, 6, 

8, 12; 0.3) = (285, 600, 850, 1185; 0.4) (165, 600, 850, 1425; 0.3). 

Now we apply GIMDM, to compute optimal solution. 

Now, firstly we calculate intuitionistic fuzzy dual variables uIij and υIij for each row and 

column respectively, satisfying uI
ij  υI

ij = cI
ij for each occupied cell. 

So, let υI
1 = (-1, 0, 0, 1; 1) (-1, 0, 0, 1; 0). 

For each occupied cell,  

                                                    uI
1 + υI

2 = (3,5,7,12;0.5) (1,5,7,15;0.3) 

     uI
2 + υI

1 = (2,5,8,10;0.6) (1,5,8,12;0.2) 

      uI
2 + υI

2 = (4,8,10,13;0.4) (3,8,10,15;0.3) 

      uI
3 + υI

1 = (2,7,11,15;0.5) (1,7,11,18;0.3) 

      uI
3 + υI

3 = (4,6,8,10;0.6) (3,6,8,12;0.3) 

Thus, we get,  

                          uI
3 = (1, 7, 11, 16; 0.5) (0, 7, 11, 19; 0.3) 

   uI
2 = (1, 5, 8, 11; 0.6) (0, 5, 8, 13; 0.2) 

   υI
3 = (-12, -5, 1, 9; 0.5) (-16, -5, 1, 12; 0.3) 

   υI
2 = (-7, 0, 5, 12; 0.4) (-10, 0, 5, 15; 0.3) 

   uI
1 = (-9, 0, 7, 19; 0.4) (-14, 0, 7, 25; 0.3) 

Therefore,  

                          dI
11 = (-18, -3, 8, 25; 0.4) (-25, -3, 8, 33; 0.3) 

   dI
13 = (-26, -3, 14, 37; 0.4) (-36, -3, 14, 48; 0.3) 

   dI
23 = (-17, -3, 10, 26; 0.5) (-23, -3, 10, 34; 0.3) 

   dI
32 = (-23, -7, 5, 22; 0.4) (-31, -7, 5, 29; 0.3) 
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Since the value of x0(d
I
32) is most negative, so IBFS is not intuitionistic fuzzy optimal. 

Table no. 2.6: Construction of loop  

 D1 D2 D3 Sup

ply 

S1 (2,4,8,15;0.6) 

(1,4,8,18;0.3) 

(3,5,7,12;0.5) 

(1,5,7,15;0.3) 

(2,5,9,16;0.7) 

(1,5,9,18;0.3) 

25 

S2 (2,5,8,10;0.6) 

(1,5,8,12;0.2) (+) 

(4,8,10,13;0.4) 

(3,8,10,15;0.3) (-) 

(3,6,10,15;0.8) 

(2,6,10,18;0.2) 

30 

S3 (2,7,11,15;0.5)(1,7,

11,18;0.3)(-) 

(5,9,12,16;0.7)(3,9,1

2,19;0.2)(+) 

(4,6,8,10;0.6)(3,6

,8,12;0.3) 

40 

Dem

and 

35 45 15  

Since the minimum allocation in the cell marked with (-) sign is 20, so, add 20 to the cell 

with (+) sign, and subtract 20 from the cell with (-) sign. 

Table no. 2.7: Improved basic feasible solution  

 D1 D2 D3 Sup

ply 

S1 (2,4,8,15;0.6) 

(1,4,8,18;0.3) 

(3,5,7,12;0.5) 

(1,5,7,15;0.3) 

(2,5,9,16;0.7) 

(1,5,9,18;0.3) 

25 

S2 (2,5,8,10;0.6) 

(1,5,8,12;0.2) 

(4,8,10,13;0.4) 

(3,8,10,15;0.3) 

(3,6,10,15;0.8) 

(2,6,10,18;0.2) 

30 

S3 (2,7,11,15;0.5)(1,7,1

1,18;0.3) 

(5,9,12,16;0.7)(3,9,1

2,19;0.2) 

(4,6,8,10;0.6)(3,6,

8,12;0.3) 

40 

Dem

and 

35 45 15  

Now compute uIij and υIij satisfying uI
ij  υI

ij = cI
ij for each occupied cell. 

Let uI
3 = (-1, 0, 0, 1; 1) (-1, 0, 0, 1; 0). 

For each occupied cell, we have, uI1 + υI
2 = (3,5,7,12;0.5) (1,5,7,15;0.3) 

     uI
2 + υI

1 = (2,5,8,10;0.6) (1,5,8,12;0.2) 

      uI
3 + υI

1 = (2,7,11,15;0.5) (1,7,11,18;0.3) 

25 

30 

5 20 15 

25 

10 20 

25 20 
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      uI
3 + υI

2 = (5,9,12,16;0.7) (3,9,12,19;0.2) 

      uI
3 + υI

3 = (4,6,8,10;0.6) (3,6,8,12;0.3) 

after solving above equations, we get, 

    υI
3 = (3, 6, 8, 11; 0.6) (2, 6, 8, 13; 0.3) 

   υI
2 = (4, 9, 12, 17; 0.7) (2, 9, 12, 20; 0.2) 

   υI
1 = (1, 7, 11, 16; 0.5) (0, 7, 11, 19; 0.3) 

   uI = (-14, -6, 1, 9; 0.5) (-18, -6, 1, 12; 0.3) 

   uI
1 = (-14, -7, -2, -8; 0.5) (-19, -7, -2, 13; 0.3) 

Thus, for each unoccupied cell,  

    dI
11 = (-22, -5, 8, 28; 0.5) (-31, -5, 8, 37; 0.3) 

   dI
13 = (-17, -1, 10, 27; 0.5) (-25, -1, 10, 35; 0.3) 

   dI
23 = (-17, -3, 10, 26; 0.5) (-23, -3, 10, 34; 0.3) 

Since x0(d
I
ij) ≥ 0 for all unoccupied cells, so optimal solution is x12 = 25, x21 = 30, x31 = 5, 

x32 = 20, x33 = 15, and the minimum transportation intuitionistic fuzzycost is 25(3, 5, 7, 12; 
0.5) (1, 5, 7, 15; 0.3) 30(2, 5, 8, 10; 0.6) (1, 5, 8, 12; 0.2) 5(2, 7, 11, 15; 0.5) (1, 7, 11, 

18, 0.3) 20(5, 9, 12, 16; 0.7) (3, 9, 12, 19; 0.2)  15(4, 6, 8, 10; 0.6)(3, 6, 8, 12; 0.3) = 

(305, 580, 830, 1145; 0.5) (165, 580, 830, 1385; 0.3). 
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Chapter 3 

Chapter 3: An Integrated Method Using 

Intuitionistic Fuzzy Set and Linear Programming 

for Supplier Selection Problem 

3.1 Introduction: 

In the recent years, competitive pressures are forcing enterprises to re-attend on theirs 
supply chain management (SCM) and use new strategies to design and develop engineering 

products to quickly and exactly responding the customers' demand. In these new strategies, 

to ensure the quality and performance of products, suppliers work closely with in-house 
designers to design some of sub-assemblies and components. Therefore, companies pay 

particular attention to the indentification and selection appropriate suppliers. Supplier 

selection involves several conflicting criteria, where decision maker’s knowledge is usually 

vague and imprecise. Thus, it is a multi-criteria group decision-making problem. 

Sonmez (2006) defined supplier selection as “the process of the suppliers where able to 

provide the buyer with the right quality products and/or services at the right price, at the 

right quantities and at the right time”. Selection of suppliers has a direct impact on the 

financial, technical and operational performance of an organization.  

It influences products cost and quality. Therefore, it affects directly competitiveness of the 
organization in the market and end customer satisfaction. Supplier selection is a multiple 

criteria decision-making (MCDM) problem affected by qualitative and quantitative criteria 

(Chan et al. 2007). These factors are defined to measure important aspects of the supplier’s 

business as financial and technical ability, support resources, quality systems and so on. 

The overall objective of supplier selection process is to maximize overall value to the buyer, 

reduce by risk, and build long term relationships between buyers and suppliers (Chena et.al, 

2006). 

This article develops a new method for supplier selection problem. Analytical hierarchy 

process (AHP) is used to evaluate the supplier selection factors. 

3.2 Background:  

Researchers have been widely studied multi-criteria techniques to select the best suppliers. 
They are used many methods such as cluster analysis, case-based reasoning systems, 

statistical models’ decision support systems, data envelopment analysis, multi criteria 

decision making, analytical hierarchy process (AHP), analytical network process (ANP), 

TOPSIS and SMART.  
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Total cost of ownership models, activity-based costing, artificial intelligence (neural 
network, fuzzy set theory), mathematical programming and some of hybrid model such as 

AHP-LP, ANP-GP, FAHP, F-TOPSIS. 

A good review of the methods for supporting supplier selection is represented by Aissaoui 

et.at (2007) and Ho et. Al (2010). Akarte et. Al (2001) created an AHP system based upon 
web to evaluate the suppliers. It uses 18 criteria to evaluate the suppliers and related 

importance weightings are determined by using a pairwise comparison. Gencer et al. (2007) 

considered supplier selection as a multi-criteria decision problem. They developed a model 

usage of analytic network process (ANP) in supplier selection criteria in feedback 

systematic. 

A hierarchy model based upon fuzzy set theory is presented by Chen et al. (2006) to select 

best supplier. They used linguistic variables to assess supplier factors. This model 

considered both quantitative and qualitative criteria. 

Many works integrated several approaches to evaluate the performance of suppliers and to 

select the best suppliers. 

Mendoza et al. (2008) used goal programming to develop an integrated AHP-GP approach 

to sort best suppliers while determine the optimal order quantity. 

For first time, amid et al. (2006) presented a fuzzy multi-objective linear model to overcome 

the vagueness of the information and used different weights for various objectives. 

Ount et al. (2009) developed a supplier evaluation approach based on the ANP and the 

TOPSIS methods, under the fuzzy environment, to help a telecommunication company. 

They used Fuzzy ANP to calculate criteria weights and Fuzzy TOPSIS to select a supplier. 

Lee (2009) developed a fuzzy analytic hierarchy process (FAHP) model to evaluate 

suppliers, which incorporates the benefits, opportunities, costs and risks (BOCR) concept 

and a performance ranking of the suppliers is obtained. 

The rest of this book is structured as follows: section 3 discusses the proposed method for 

supplier selection. This section is included the overview of Intuitionistic fuzzy set, and 

developing model. Solution methodology present in section 4.  

Section 5 represents a numerical example to select the best suppliers by suggested method 

and in final section; conclusion and future research is presented. 

3.3 Background: 

This book develops a hybrid method by using intuitionistic fuzzy sets (IFS) and linear 

programming to select suppliers for manufacturing firms. Use of IFSs provides a formal 
language for explaining lack of information in the human reasoning, to generate decisions. 

The following sections describe intuitionistic fuzzy sets and applied method for solving 

multi-objective model. 
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3.3.1 Intuitionistic Fuzzy Sets:  

In some real-life situations, a decision maker (DM) may not be able to accurately express 

his/her preferences for alternative due to that DM may not possess a precise level of 

knowledge and the DM is unable to express the degree to which one alternative are better 

than others. In such cases, the DM may provide his/her preferences with a degree of doubt. 
IFSs are suitable for these situations. Intuitionistic fuzzy set (IFS) is a generalization of 

fuzzy set theory, introduced by Atanassov (1986). It characterized by a membership 

function and a non-membership function.  

Intuitionistic fuzzy set A is introduced by: 

A = {μA(X), υA(X)|x  X} 

0 ≤ μA(X) + υA(X) ≤ 1 

μA(x) and υA(x) are membership and non-membership functions, respectively. IFSs have a 

third parameter that usually known as the DM’s hesitation degree. This index expresses lack 

of knowledge whether x belongs to A or not. 

πA = 1 - μA(X) - υA(X)        

 (1) 

It is obvious that 0 ≤ πA(x) ≤ 1, for each x  X. 

Smaller πA(x) indicates more certain knowledge about x certain and vice versa. Obviously, 

when πA(x) = 0, fuzzy set concept is resulted (Shu et al. 2006). If A and B are two 

intuitionistic fuzzy sets, then: 

A1.A2 = {(x, μA(x). μB(x), υA(x) + υB(x) – υA(x). υB(x)) | x  X}   (2) 

A1 + A2 = {(x, μA(x) + μB(x) - μA(x). υB(x), υA(x). υB(x)) | x  X}  

 (3) 

Ᾱ = (υA(x), μA(x))         

 (4) 

λA = {(1 – (1 – μA(x)) λ, υA(x)λ) | x  X}     

 (5) 

score function S of an intuitionistic fuzzy value shown as follows [Xu, 2007]: 

S(A) = μA(x) –υA(x)        

 (6) 

The larger S indicates the greater the intuitionistic fuzzy value A. 
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  n 

i = 1   n 

i = 1 

3.3.2 Linear Programming Model:  

This model is proposed to determine suppliers and to calculate the optimum order quantities 

among the selected suppliers. In order to formulate the model, notations of the model are 

defined as follow: Indices: 

i = 1, 2, …, an  Index of suppliers 

j = 1, 2, …, e1  Index of satisfaction factors 

k = 1, 2, …, e2  Index of flexibility factors 

Parameters: 

D   Anticipated demand 

C   Supplier capacity 

SI   Satisfaction index  

FI   Flexibility index 

w1j    Relative important of jth element of SI 

w2k   Relative important of kth elements FI 

Sij    Value of the jth factor of SI for supplier i  

Fij   Value of the element j for FI of supplier i  

Decision variables: 

Xi   Ordered amount to supplier i  

Yi    1 if supplier i is selected, 0 otherwise 

The objective functions and the constraints of this model are described as follow: 

 max f1 = ∑ SIi Xi       

 (7) 

 

  max f2 = ∑ FIiYi       

 (8) 
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  n 

i = 1 

  e1 

j = 1 
  n 

i = 1 

  e2 

j = 1 

  n 

i = 1 

  SIi = ∑      ∑ w1iSij       

 (9) 

 

  FIi = ∑ ∑w2ifij       (10) 

 

   ∑ Xi ≥ D       

 (11) 

 Xi ≤ Ci  i        (12) 

    Xi ≤ MYi  i       

 (13) 

  Yi ≤ Xi  i        (14) 

  Xi ≥ 0  i        (15) 

  yi  {0, 1} i       

 (16) 

Objective 7 maximizes satisfaction index of the suppliers and objective 8 maximizes 

flexibility index. 

Constraints 9 and 10 show satisfaction and flexibility indices of supplier I , respectively. 
Constraint 11 says that ordered values to suppliers have to support buyer demand. 

Constraint 12 shows that ordered values to each supplier have to be less than its capacity. 

Constraints 13 and 14 relate two variables X and Y, and if xi > 0 then Yi = 1. 

 M in constraint 13 is a large number. 

3.3.3 To Solve Multi-Objective Model: 

Zimmermann (1978) used the following steps to solve multi-objective linear programming 

(MOLP) model, by applying fuzzy logic approach: 

Step 1. Solve the MOLP of as a single-objective linear programming model by using only 

one objective at a time and ignoring the others. 

Step 2. By using optimal solutions calculated from previous step, values for other functions 

are obtained and pay-off matrix of developed as follows: 
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   f1 … 

   x*1 (f*11 … 

   . . . 

   . . . 

   . . . 

   x*n (fn1 … 

Here x*1, …  are the optimal solutions of the objective functions f1(x), … 

Step 3. Obtain lower bound (L) and upper bound (U) for each objective: 

. Lr = min{fr(x1),  } r = 1, 2, …, n 

. Ur = max{fr(x1), … } r = 1, 2, …, n 

Step 4. Define membership function for each objective. 

   1   fr(x) ≤ Lr  

 

 

  μfr(x) =    Lr ≤ fr(x) ≤ Ur   (17)  

 

   0   fr(x) ≤ Lr 

Step 5. Convert multi-objective problem into a single objective problem. 

max λ          

 (18) 

 

λ (Ur – Lr) ≤ Ur – fr(x)    r = 1, …, n    (19) 

  g(x) ≤ b   =      

 (20) 

x ≥ 0, λ  [0, 1]         (21) 

Ur – fr(x) 

Ur - Lr 
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3.4 The Proposed Approach: 

This method uses IFSs to explain two indices, satisfaction and flexibility. Satisfaction Index 

(SI) is a measure of the extent to which a buyer is satisfied by a supplier capability and it is 

calculated by 3 importance factors of the quality, price, and lead-time. Flexibility Index (FI) 

shows the additional capability of the supplier to respond when buyer requirement changes 

and is calculated by 2 factors: extra production volume and product variety. 

FI in the product volume (FLvo) shows extra capacity percent what supplier can allocate 

buyer contrast changes in demand. FI in the product variety (FIva) show the ability to create 

different products. 

The proposed approach includes the following steps: 

Step 1- Evaluate SI and FI. 

Satisfaction functions are defined for satisfaction factors. Satisfaction functions for any 

factor show the buyer satisfaction’s measurement for the related factor. 

Step 2- Determine relative weight of each element of index. 

Relative score these indexes are determined by IFSs which is described as follows: 

2-1- Determine a group of the decision makers and their weights (wD = wD1, wD2, …, wDυ) 

which is expressed by linguistic variables. These linguistic variables are shown in table 1. 

2-2- Construct intuitionistic fuzzy preference relations to determine score for each factor of 

each index by each DM. 

Preference relations are expressed by linguistic variables (table 1). The DMs provides 

his/her intuitionistic preference for each pair of criteria. To calculate score, the following 

steps are implemented: 

Table 3.1: Linguistic variables for importance of each criterion and DMs 

Linguistic Values IFNs 

Very Low (VL) (0.1, 0.9) 

Low (L) (0.15, 0.25) 

Medium Low (ML) (0.25, 0.32) 

Medium (M) (0.5, 0.4) 

Medium High (MH) (0.55, 0.25) 

High (H) (0.85, 0.1) 

Very High (VH) (0.9, 0.1) 
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  n 

j = 1 

  m 

υ = 1 

2-2-1- Calculate score of each factor, by each DM: 

 

Wυ
ci = 

1

𝑛
    ∑Wυ

ij,     i = 1, 2, …, n  (22) 

Wυ
ci is Averaged intuitionistic fuzzy value i of the criterion over all the other criteria which 

is concluded from vth DM. Wυ
ij is intuitionistic preference relation of the criterion i on j that 

is determined by vth DM. Sum of the intuitionistic fuzzy numbers obtain by equation 3. 

Also, multiply a constant number in intuitionistic fuzzy number compute equation 5. 

2-2-2- Obtain final score by using equations 2 and 3. 

 

   

  wci = ∑ wDυw
υ
ci,    i = 1, 2, …, n   (23) 

where wci is intuitionistic fuzzy weight criterion i and wDk is weight of vth DM. 

3-2- Obtain score by using equation 6. 

Step 3- Putting the results of the previous step in the linear programming problem. 

3.5 Numerical Example: 

A hair drier manufacturer wants to produce a new model. He needs by purchasing engines 

with power 2000w from external suppliers. after primary evaluations, 5 suppliers are 

selected as the qualified suppliers. suppliers’ data is represented in the table 2. 

Table 3.2: Suppliers’ information  

Supplier Price Leadtime Quality Variety Volume 

1 15-0.5 11-.8 3-.78 3/10 .2 

2 12-.8 8-1 1.5-.94 2/10 .15 

3 14-.6 6-.5 4-.67 4/10 .24 

4 16-.4 10-1 3.5-.72 6/10 .12 

5 11-.9 12-.6 2.5-.83 5/10 .09 

Supplier selection process is shown below: 

Step 1 – Evaluate SI and FI. 
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1-1- Determine satisfaction functions for any factor. Satisfaction function, indeed, 
shows desirable level of customers for each factor. These functions are shown in 

the table 3. Amount of the satisfaction for each factor is shown in table 4. 

2-1- Determine flexibility index. 

FI in the product volume (FI-vo), shows the capacity of suppliers for answering extra 

demand. Proportion of this potential capability is shown in the 6th column of table 4. FI in 

the product variety (FI-va) shows the ability to create different products. We assume that 
the ten versions of the desired product. We assume that the ten versions of the desired 

product are produced by different companies. Suppliers Ability to produce different 

products is shown in Table 4. 

Step 2- Determine relative weight of each element of index. 

2-1- Determine decision makers and their weights by linguistic variables. Intuitionistic 

weights of DMs are: (0.85, 0.1), (0.9, 0.1) and (0.85, 0.1). 

Table 3.4: Suppliers’ information 

Supplier Price Leadtime Quality variety Volume (%) 

1 0.5 0.8 0.78 3/10 0.2 

2 0.8 1 0.94 2/10 0.15 

3 0.6 0.5 0.67 4/10 0.24 

4 0.4 1 0.72 6/10 0.12 

5 0.9 0.6 0.83 5/10 0.09 

1- 2-2- Construct intuitionistic fuzzy preference relations to determine score of each factor 

index by each DM. Score of each factor of the index by each DM is calculated by equations 

13. The results are presented in Table 5 and 6 for SI and FI. 3-2- Obtain intuitionistic fuzzy 
weights (IFWs). To calculate IFWs, equations 22 and 23 are used. The results are presented 

in Table 3.7. 

4-2-Final score: Final score for factors of SI and FI are calculated by using equation 6, and 

the results are shown in tables 7 and 8, respectively. 4-Put weights in the linear 

programming model and solve it. Weights are put in the linear programming model and 
order quantities to each supplier identified that are shown in table 9. As you can see from 

table suppliers 1, 4 and 5, with values 300, 500 and 700, respectively, are selected. 

3.6 Conclusion and Future Research: 

This article outlined a new method by using intuitionistic fuzzy set (IFS) and linear 

programming for supplier selection problem. To order select suppliers, two indices were 
introduced: satisfaction index (SI) and flexibility index (FI). For SI, 3 factors quality, price 

and leadtime are defined. In contrast to the previous works, in this book flexibility is 

determined as a factor with a detailed definition. Two factors, production volume and 

product variety, is developed for FI.  
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20 – c 

20 - 10 

r - 5 

7 - 5 

15 - r 

15-10 

The relative importance of the factors of SI and FI are calculated by IFS method.  

By Using IFSs, decision-making process is more realistic. 

In IFS, DM may provide his/her preferences with a degree of doubt in a more realistic form. 
A linear programming model uses the relative weights of each factor to determine the most 

suitable suppliers. There are a number of opportunities for expanding the research, including 

defining further factors or other indices or considering the inter-dependency between the 

evaluation factors. 

 Table 3.5: Determined score by DM for SI 

Element FI DM1  DM2 DM3 

Price 0.42,0.31 0.42,0.31 0.65,0.23 

Leadtime 0.43,0.31 0.43,0.3 0.32,0.27 

Quality 0.39,0.52 0.3,0.4 0.3,0.41 

Table 3.6 Determined score by DM for FI 

Element FI DM1  DM2 DM3 

Variety 0.73,0.22 0.39,0.42 0.53,0.35 

Volume 0.33,0.65 0.43,0.35 0.32,0.27 

   Table 3.3. Satisfaction functions 

    1  c ≤ 10 

  Up =          

     c ≥ 10  

 

Satisfaction function for price: satisfaction measurement for buyer is desirable when goods 

price is lower or equal than 10$. 

     5 ≤ r ≤ 7 

 

    Ul = 1   7 < r ≤ 10 

     10 < r ≤ 15 
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10 - r 

10-1 

Satisfaction function for lead time: The product is desirable when its lead-time is between 
7 and 10 days. Also, for lead-time less than a predefined limit (i.e. 7 days), due to problems 

related to inventory capacity, satisfaction of buyer reduced. 

    1   r ≤ 1 

 

   Uq =     1 ≤ r ≤ 10 

           

     0  r > 

Satisfaction function for quality: An order is desirable when defect rate of the product (r, as 

the defect percentage) is lower or equal than 1%. 

Table 3.8: Final score FI 

H, VH, H Variety Volume 

IFW 0.86, 0.06 0.68, 0.1 

Score 0.8 0.58 

Crisp weight 0.58 0.42 

Table 3.9. Allocated values each supplier  

Supplier Ordered Value 

1 300 

2 0 

3 0 

4 500 

5 700 
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Chapter 4 

Chapter 4: Intuitionistic Fuzzy Multi-Objective 

Non-Linear Programming Problem 

4.1 Introduction: 

The concept of maximizing decision was initially proposed by Bellman and Zadeh [3], 

Zadeh [10-12]. By adopting this concept of fuzzy sets was applied in mathematical 

programs firstly by Zimmerman [12]. In the past few years, many researchers have come to 
the realization that a variety of real-world problems which have been previously solved by 

non-linear programming techniques are in fact more complicated. Frequently, these 

problems have multiple goals to be optimized rather than a single objective. Moreover, 

many practical problems cannot be represented by non-linear programming model. 
Therefore, attempts were made to develop more general mathematical programming 

methods and many significant advances have been made in the area of multi-objective non-

linear programming. Several authors in the literature have studied the fuzzy multi-objective 

quadratic programming problems. 

Out of several higher order fuzzy sets, intuitionistic fuzzy sets (IFS) [1,2] have been found 

to be highly useful to deal with vagueness. There are situations where due to insufficiency 

in the information available, the evaluation of membership values is not also always 
possible and consequently there remains a part indeterministic on which hesitation survives. 

Certainly, fuzzy sets theory is not appropriate to deal with such problems; rather 

intuitionistic fuzzy sets (IFS) theory is more suitable. The Intuitionistic fuzzy set was 

introduced by Atanassov. K. T. [1] in 1986. For the fuzzy multiple criteria decision-making 
problems, the degree of satisfiability and non-satisfiability of each alternative with respect 

to a set of criteria is often represented by an intuitionistic fuzzy number (IFN). This 

Intuitionistic fuzzy mathematics is very little studied subject.  

In a recent review, Toksari [4] gave a Taylor series approach to fuzzy multi-objective fuzzy 
quadratic programming problem. A. Nagoorgani, R. Irene Hepzibah et al., [6] proposed a 

method to solve multi-objective fuzzy quadratic programming problems are available in the 

literature [4, 7, 8, 13]. In this book, membership and non-membership functions, which are 

associated with each objective of intuitionistic fuzzy multi-objective quadratic 
programming problem (IFMOQPP) are transformed by using first order Taylor polymial 

series [4, 8]. Then the IFMOQPP can be reduced to a single objective linear programming. 

The book is organized as follows: 

The formulation of the problem is given in Section 2 and Section 3 deals with an algorithm 
for solving a intuitionistic fuzzy multi-objective quadratic programming problem. Finally, 

in Section 4, the effictiveness of the proposed method is illustrated by means of an example. 

Some concluding remarks are provided in section 5. 
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4.2 Formation of the Problem: 

The multi-objective linear programming problem and the multi-objective intuitionistic 

fuzzy linear programming problem are described in this section. 

A. Multi-objective quadratic programming problem (MOQPP) 

A linear multi-objective optimization problem is stated as 

Maximize or Minimize: [z1(x), z2(x), ski(x)]  

Subjecti to Ax (≤ = ≥) b,x ≥ 0 

Where zj(x), j = 1, 2, n is an N vector of cost coefficients, An an m x N – Coefficients matrix 

of constraints and b an m vector of demand (resource) availability. 

A. Intuitionistic fuzzy multi-objective quadratic programming problem (IFMOQPP) 

If an imprecise aspiration level is introduced to each of the objectives of MOQPP,  

then these intuitionistic fuzzy objectives are termed as intuitionistic fuzzy goals. 

Let gl
k be the aspiration level assigned to the kth objective zk(x).  

Then the intuitionistic fuzzy objectives appear as  

a. Zk(x) ≥ gk
l (for maximizing Zk(x)); 

b. Zk(x) ≤ gk
l (for minimizing Zk(x)); 

Where ≥ and ≤ indicate the fuzziness of the aspiration levels,  

and is to be understood as “essentially more than” and “essentially less than in the sense of 

Zimmerman [12]. 

Hence, the intuitionistic fuzzy multi-objective linear programming problem can be stated as 

follows: 

Find X 

So as to satisfy Zi(x) ≤ gi
l, i=1, 2, ……………….il, Zi(x) ≥ gi

l, i=il+1, il+2, k 

Subject to x  X, X ≥ 0. 

Now, in the field of intuitionistic fuzzy programming, the intuitionistic fuzzy objectives are 
characterized by their associated membership functions and non-membership functions. 

They can be expressed as follows: 
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zi(x) – ti 

  gi - ti 

zi(x) –gi 

  ti - gi 

ti - zi(x) 

  ti - gi 

gi - zi(x) 

  ti - gi 

    1,   if zi(x) ≥ gi 

 

 If Zi(x) ≥ gi
l, μi

l(x) =    , if ti ≤ zi(x) ≤ gi 

 

     0,  if zi(x) ≤ ti 

And     0,   if zi(x) ≥ gi 

 

   υi
l(x) =    , if ti ≤ zi(x) ≤ gi 

 

     1,  if zi(x) ≤ ti 

    1,   if zi(x) ≤ gi 

 

 If Zi(x) ≤ gi
l, μi

l(x) =    , if gi ≤ zi(x) ≤ ti 

 

     0,  if zi(x) ≤ ti 

And  

    0,   if zi(x) ≥ gi 

 

   υi
l(x) =    , if ti ≤ zi(x) ≤ gi 

 

     1,  if zi(x) ≤ ti 

Where ti and ti are the upper tolerance limit and the lower tolerance limit respectively, for 

the ith intuitionistic fuzzy objective. Now, in a intuitionistic fuzzy decision environment, the 

achievement of the objective goals to their aspired levels to the extent possible are actually 

represented by the possible achievement of their respective membership values  
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∂μi
l(xi*) 

  ∂x1 

∂μi
l(xi*) 

  ∂xj 

∂μi
l(xi*) 

  ∂x2 

∂μi
l(xi*) 

  ∂xn 

∂υi
l(xi*) 

  ∂x1 

∂υi
l(xi*) 

  ∂xj 

∂υi
l(xi*) 

  ∂x2 

∂υi
l(xi*) 

  ∂xn 

and non-membership values to the highest degree. The relationship between constraints and 
the objective functions in the intuitionistic fuzzy environment is fully symmetric, that is, 

there is no longer a difference between the former and the latter. This guarantees the 

maximization of both objectives’ membership values and non-membership values 

simultaneously. 

4.3 Algorithm for Intuitionistic Fuzzy Multi-Objective Quadratic 

Programming Problem: 

Toksari [4] proposed a Taylor series approach to fuzzy multi-objective linear fractional 

programming. Here, in the intuitionistic fuzzy multi-objective quadratic programming 
problem, membership functions and non-membership functions associated with each 

objective are transformed by using Taylor series at first and then a satisfactory value(s) for 

the variable(s) of the model is obtained by solving the intuitionistic fuzzy model, which has 
a single objective function. Based on this idea, an algorithm for solving intuitionistic fuzzy 

multi-objective quadratic programming problem is developed here. 

Step 1. Determine x*I = (x*i1, x*i2, x*in), that is used to maximize or minimize the ith 

membership function μi
l(x) and non-membership function υi

l(x) (i=1, 2, k) where n is the 
number of variables. Step 2. Transform membership and non-membership functions by 

using first-order Taylor polynomial series 

 

μi
l(x) = μi

l(x) = μi
l(x*) + [(x1 – xi1*)  + (x2 – xi2*)     +… 

 

……. + (xn –xin*)  ] 

 

μi
l(x) = μi

l(x) = μi
l(x*) + ∑ (𝑥j − 𝑥𝑖𝑗 ∗)

𝑛

𝑗=1
  

 

 υi
l(x) = υi

l(x) = υi
l(x*) + [(x1 – xi1*)  + (x2 – xi2*)     +… 

 

……. + (xn –xin*)  ] 
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∂μi
l(xi*) 

  ∂xj 
∂υi

l(xi*) 

  ∂xj 

∂μi
l(xi*) 

  ∂xj 

∂υi
l(xi*) 

  ∂xj 

zi(x) – ti 

  gi - ti 

zi(x) –gi 

  ti - gi 

υi
l(x) = υi

l(x) = υi
l(x*) + ∑ (𝑥j − 𝑥𝑖𝑗 ∗)

𝑛

𝑗=1
  Step 3.  

Find satisfactory x* = (x*1, x*2, ………, x*n)  

by solving the reduced problem to a single objective for membership function and non-

membership function respectively. 

  p(x) = ∑ μk
𝑖=1 i

l (xi*) +  ∑ (𝑥j − 𝑥𝑖𝑗 ∗)
𝑛

𝑗=1
    

 

and q(x) = ∑ μk
𝑖=1 i

l (xi*) +  ∑ (𝑥j − 𝑥𝑖𝑗 ∗)
𝑛

𝑗=1
 

thus, IFMOQPP is converted into a new mathematical model and is given below: 

Maximize or minimize  

   ∑ μk
𝑖=1 i

l (xi*) +  ∑ (𝑥j − 𝑥𝑖𝑗 ∗)
𝑛

𝑗=1
    

And maximize or minimize q(x) = ∑ μk
𝑖=1 i

l (xi*) +  ∑ (𝑥j − 𝑥𝑖𝑗 ∗)
𝑛

𝑗=1
 

were    1,   if zi(x) ≥ gi 

 

   μi
l(x) =    , if ti ≤ zi(x) ≤ gi 

 

     0,  if zi(x) ≤ ti 

And     0,   if zi(x) ≥ gi 

 

   υi
l(x) =    , if ti ≤ zi(x) ≤ gi 

 

     1,  if zi(x) ≤ ti 
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ti - zi(x) 

  ti - gi 

gi - zi(x) 

  ti - gi 

c1-z1(x) 

c1 – b1 

z1(x)-a1 

b1 – a1 

    1,   if zi(x) ≤ gi 

 

      μi
l(x) =    , if gi ≤ zi(x) ≤ ti 

 

     0,  if zi(x) ≤ ti 

And     0,   if zi(x) ≥ gi 

 

   υi
l(x) =    , if ti ≤ zi(x) ≤ gi 

 

     1,  if zi(x) ≤ ti 

respectively. consider the following MOQPP: 

minimize z1(x) = -4x1 + x2
1 – 2x1x2 + 2x2

2    (4.1) 

minimize z2(x) = -3x1 + x2
1 + 2x1x2 + 3x2

2 

subject to the constraints 2x1 + x2 ≤ 6 

  x1 + 4x2 ≤ 12 and x1, x2 ≥ 0. 

a. The membership and non-membership functions were considered to be intuitionistic 

triangular (see figure 1) [5]. When they depend on three scalar parameters (a1, b1, c1). 

z1 depend on intuitionistic fuzzy aspiration levels (-113, -6.5, 100) when z2 depends 
intuitionistic fuzzy aspiration levels (-240, 5, 250). The membership and non-

membership functions of the goals are obtained as follows: 

    0,   if z1(x) ≥ c1 

     if b1 ≤ z1(x) ≤ c1    

 μ1
I(x) =     

     if a1 ≤ z1(x) ≤ b1 

   0,  if z1(x) ≤ a1 
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(-4x1+x2
1-2x1x2+2x2

2)-(-113) 

            -6.5-(-113) 

100-(-4x1+x2
1-2x1x2+2x2

2) 

            100-(-6.5) 

(-3x1+x2
1+2x1x2+3x2

2)-(-240) 

            5-(-240) 

250-(-3x1+x2
1+2x1x2+3x2

2) 

            250- 5 

∂μi
l(2.46,1.08) 

        ∂x1 

∂μi
l(2.46,1.08) 

        ∂x2 

∂μ2
l(0.89,0.22) 

        ∂x1 

∂μ2
l(0.89,0.22) 

        ∂x2 

That implies  

    0,       if z1(x) ≥ 100 

        if -6.5 ≤ z1(x) ≤ 100 

 μ1
I(x) =         

         if -113 ≤ z1(x) ≤ -6.5 

   0,     if z1(x) ≤ -113 

In the similar way,  

    0,       if z2(x) ≥ 250 

        if 5 ≤ z2(x) ≤ 250 

 μ2
I(x) =  

         if -240 ≤ z2(x) ≤ 5 

   0,     if z2(x) ≤ -240 

 

If μ1
I(x) = μ1

I(x) = μ1
I(2.46, 1.08) + [(x1 -2.46)   + 

 

 (x2-1.08)   ] 

 

μ1
I(x) = 0.012x1 -0.006x2 + 0.974      (4.2) 

 

If μ2
I(x) = μ2

I(x) = μ2
I(0.89, 0.22) + [(x1 -0.89)   + 

 

 (x2-0.22)   ] 
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z1(x)-b1 

c1 – b1 
b1-z1(x) 

b1 – a1 

μ2
I(x) = 0.003x1 -0.013x2 + 0.974      (4.3) 

then the objective of the IFMOQPP is obtained by adding (4.2) and (4.3), that is p(x) = 

μ1
I(x) + μ2

I(x) = 0.015x1 – 0.019x2 + 1.948 

subject to the constraints  

    2x1 + x2 ≤ 6 

     x1+ 4x2 ≤ 12 

The problem is solved and the solution is obtained is as follows: x1= 2.67; x2=0.67; 
z1(x)=6.2231; z2(x) =-4.0043 and the membership values are μ1 = 0.881 and μ2 = 0.963. The 

membership function values show that both goals z1 and z2 are satisfied with 88.1% and 

96.3% respectively for the obtained solution which is x1 = 2.67; x2= 0.67. 

 

Figure 4.1: Membership and Non-Membership Functions Defined as Intuitionistic 

Triangular (a) 

The non-membership functions of the goals are as obtained as follows: 

    1,   , if z1(x) ≥ c1 

     , if b1 ≤ z1(x) ≤ c1    

 υ1
I(x) =      

      , if a1 ≤ z1(x) ≤ b1 

   1,  , if z1(x) ≤ a1 
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(-6.5)-(-4x1+x2
1-2x1x2+2x2

2) 

            -6.5-(-113) 

(-4x1+x2
1-2x1x2+2x2

2)-(-6.5) 

            100-(-6.5) 

5-(-3x1+x2
1+2x1x2+3x2

2) 

            5-(-240) 

(-3x1+x2
1+2x1x2+3x2

2)-5 

            250- 5 

∂υi
l(2.46,1.08) 

        ∂x1 

∂υi
l(2.46,1.08) 

        ∂x2 

(-4x1+x2
1-2x1x2+2x2

2)-(-6.5) 

            100-(-6.5) 

(-6.5)-(-4x1+x2
1-2x1x2+2x2

2) 

            -6.5-(-113) 

(-3x1+x2
1+2x1x2+3x2

2)-5 

            250- 5 

5-(-3x1+x2
1+2x1x2+3x2

2) 

            5-(-240) 

    1,       , if z1(x) ≥ 100  

         , if -6.5 ≤ z1(x) ≤ 100 

     =       , if -113 ≤ z1(x) ≤ -6.5 

 

   1,     if z1(x) ≤ -113 

In the similar way,  

    1,       if z2(x) ≥ 250 

         if 5 ≤ z2(x) ≤ 250 

 υ2
I(x) =        if -240 ≤ z2(x) ≤ 5 

 

   1,     if z2(x) ≤ -240 

 

If υ1
I((x)=max (min (        ,                    ) 

  

      , 1) and  

 

If υ2
I((x)=max (min (   ,     ), 1), 

 

Then υ1
I*(2.46,1.08) and υ2

I*(0.89,0.22). The non-membership functions are transformed by 

using first-order Taylor polynomial series 

If υ1
I((x) = υ1

I(x) = υ1
I(2.46, 1.08) + [(x1 -2.46)   + 

 

 (x2-1.08)   ] 
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∂υ2
l(0.89,0.22) 

        ∂x1 

∂υ2
l(0.89,0.22) 

        ∂x2 

d1-z1(x) 

d1 – c1 

z1(x)-a1 

b1 – a1 

υ1
I(x) = 0.012x1 -0.006x2 + 0.977      (4.4) 

 

 υ2
I(x) = υ2

I(x) = υ2
I(0.89, 0.22) + [(x1 -0.89)   + 

 

 (x2-0.22)   ] 

 

υ2
I(x) = 0.003x1 -0.013x2 + 1       (4.5) 

then the objective of the IFMOQPP is obtained by adding (4.4) and (4.5), that is q(x) = 

υ1
I(x) + υ2

I(x) = 0.015x1 – 0.019x2 + 1.977 

subject to the constraints  

    2x1 + x2 ≤ 6 

     x1+ 4x2 ≤ 12 

The problem is solved and the solution is obtained is as follows: x1= 2.67; x2=0.67; 

z1(x)=6.2231; z2(x) =-4.0043 and the membership values are υ1 = 0.119 and υ2 = 0.037.  

The non-membership function values show that both goals z1 and z2 are satisfied with 11.9% 

and 3.7% respectively for the obtained solution which is x1 = 2.67; x2= 0.67. 

b. The membership and non-membership functions were considered to be intuitionistic 

trapezoidal (see figure 2) [5] when they depend on four scalar parameters (a1, b1, c1, d1). 

z1 depends on intuitionistic fuzzy aspiration levels (5, 6.5, 8, 9.5) when z2 depends on 

intuitionistic fuzzy aspiration levels (-8.5, -4, 0.5, 5).  

The membership and non-membership functions of the goals are obtained as follows: 

    0,   if z1(x) ≥ d1 

     if c1 ≤ z1(x) ≤ d1    

 μ1
I(x) =   1  if b1 ≤ z1(x) ≤ c1    

     if a1 ≤ z1(x) ≤ b1 

   0,  if z1(x) ≤ a1 
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(-4x1+x2
1-2x1x2+2x2

2)-(5) 

            6.5- 5 

9.5-(-4x1+x2
1-2x1x2+2x2

2) 

            9.5- 8 

(-3x1+x2
1+2x1x2+3x2

2)-(-8.5) 

            4-(-8.5) 

5-(-3x1+x2
1+2x1x2+3x2

2) 

            5- 0.5 

∂μi
l(2.46,1.08) 

        ∂x1 

∂μi
l(2.46,1.08) 

        ∂x2 

9.5-(-4x1+x2
1-2x1x2+2x2

2) 

            9.5- 8 

(-4x1+x2
1-2x1x2+2x2

2) -

(5) 

            6.5- 5 
5-(-3x1+x2

1+2x1x2+3x2
2) 

            5- 0.5 

(-3x1+x2
1+2x1x2+3x2

2) -(-8.5) 

            4-(-8.5) 

 

    0,       if z1(x) ≥ 9.5 

         if 8 ≤ z1(x) ≤ 9.5 

               =   1     if 6.5 ≤ z1(x) ≤ 8 

         if 5 ≤ z1(x) ≤ 6.5 

   0,     if z1(x) ≤ 5 

 

In the similar way,  

    0,       if z1(x) ≥ 5 

         if 0.5 ≤ z1(x) ≤ 5 

 μ2
I(x) =    1     if -4 ≤ z1(x) ≤ 0.5 

         if -8.5 ≤ z1(x) ≤ -4 

   0,     if z1(x) ≤ -8.5 

 

If μ1
I((x)=max (min (       ,             ), 0) 

 and  

If μ2
I((x)=max (min (        ,           ), 0), 

 

Then μ1
I*(2.46,1.08) and μ2

I*(0.89,0.22). The membership and non-membership functions 

are transformed by using first-order Taylor polynomial series 

If μ1
I((x) = μ1

I(x) = υ1
I(2.46, 1.08) + [(x1 -2.46)   + 

 

 (x2-1.08)   ] 
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∂μ2
l(0.89,0.22) 

        ∂x1 

∂μ2
l(0.89,0.22) 

        ∂x2 

μ1
I(x) = 0.83x1 -0.4x2 + 0.61      (4.6) 

 

 μ2
I(x) = μ2

I(x) = μ2
I(0.89, 0.22) + [(x1 -0.89)   + 

 

 (x2-0.22)   ] 

 

μ2
I(x) = 0.71x1 -0.69x2 + 1       (4.7) 

then the objective of the FMOLPP is obtained by adding (4.6) and (4.7), that is p(x) = μ1
I(x) 

+ μ2
I(x) = x1 – 1.09x2 + 0.39 

subject to the constraints  

    2x1 + x2 ≤ 6 

     x1+ 4x2 ≤ 12 

The problem is solved and the solution is obtained is as follows: x1= 2.67; x2=0.67; 
z1(x)=6.2231; z2(x) =-4.0043 and the membership values are μ1 = 0.8154 and μ2 = 1. The 

membership function values show that both goals z1 and z2 are satisfied with 81.54% and 

100% respectively for the obtained solution which is x1 = 2.67; x2= 0.67. 

 

Figure 4.2: Membership and Non-Membership Functions Defined as Intuitionistic 

Trapezoidal (B) 
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z1(x)-c1 

d1 – c1 

b1-z1(x) 

b1 – a1 

6.5-(-4x1+x2
1-2x1x2+2x2

2) 

            6.5- 5 

(-4x1+x2
1-2x1x2+2x2

2)-8 

            9.5- 8 

-4-(-3x1+x2
1+2x1x2+3x2

2) 

            4-(-8.5) 

(-3x1+x2
1+2x1x2+3x2

2)-0.5 

            5- 0.5 

(-4x1+x2
1-2x1x2+2x2

2)-8 

            9.5- 8 

6.5-(-4x1+x2
1-2x1x2+2x2

2) 

            6.5- 5 

(-3x1+x2
1+2x1x2+3x2

2)-0.5 

            5- 0.5 

-4-(-3x1+x2
1+2x1x2+3x2

2) 

            4-(-8.5) 

The non-membership functions of the goals are obtained as follows: 

    1,   if z1(x) ≥ d1 

     if c1 ≤ z1(x) ≤ d1    

 υ1
I(x) =   0  if b1 ≤ z1(x) ≤ c1    

     if a1 ≤ z1(x) ≤ b1 

   1,  if z1(x) ≤ a1 

 

    1,       if z1(x) ≥ 9.5 

         if 8 ≤ z1(x) ≤ 9.5 

               =   0     if 6.5 ≤ z1(x) ≤ 8 

         if 5 ≤ z1(x) ≤ 6.5 

   1,     if z1(x) ≤ 5 

In the similar way,  

    1,       if z1(x) ≥ 5 

         if 0.5 ≤ z1(x) ≤ 5 

 υ2
I(x) =    0     if -4 ≤ z1(x) ≤ 0.5 

         if -8.5 ≤ z1(x) ≤ -4 

   1,     if z1(x) ≤ -8.5 

 

If υ1
I((x)=max (min (    ,         ), 1) 

 and  

If υ2
I((x)=max (min (         ,        ), 0), 
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∂υi
l(2.46,1.08) 

        ∂x1 

∂υi
l(2.46,1.08) 

        ∂x2 

∂υ2
l(0.89,0.22) 

        ∂x1 

∂υ2
l(0.89,0.22) 

        ∂x2 

Then υ1
I*(2.46,1.08) and υ2

I*(0.89,0.22). The membership and non-membership functions 

are transformed by using first-order Taylor polynomial series 

If υ1
I((x) = υ1

I(x) = υ1
I(2.46, 1.08) + [(x1 -2.46)   + 

 

 (x2-1.08)   ] 

 

υ1
I(x) = 0.83x1 -0.4x2 + 1.61       (4.8) 

 

 υ2
I(x) = υ2

I(x) = υ2
I(0.89, 0.22) + [(x1 -0.89)   + 

 

 (x2-0.22)   ] 

 

υ2
I(x) = 0.17x1 -0.69x2        (4.9) 

then the objective of the FMOLPP is obtained by adding (4.6) and (4.7), that is q(x) = υ1
I(x) 

+ υ2
I(x)) = x1 – 1.09x2 + 1.61 

subject to the constraints  

    2x1 + x2 ≤ 6 

     x1+ 4x2 ≤ 12 

The problem is solved and the solution is obtained is as follows: x1= 2.67; x2=0.67; 
z1(x)=6.2231; z2(x) =-4.0043 and the membership values are υ1 = 0.8146 and υ2 = 0. The 

non-membership function values show that both goals z1 and z2 are satisfied with 18.46% 

and 0% respectively for the obtained solution which is x1 = 2.67; x2= 0.67. 
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Chapter 5 

Chapter 5: Mathematical Programming on 

Reliability Optimization Model 

5.1 Introduction: 

The theory of fuzzy sets [1] has a very rich literature and many modified and generalized 

forms of the theory have been developed. Intuitionistic fuzzy set (IFS) is one of the 

generalizations of fuzzy set theory. IFS was first introduced by Atanassov [2, 3, 4] and has 
been found to be well suited for dealing with problems concerning vagueness. The concept 

of IFS can be viewed as an alternative approach to define a fuzzy set in a situation where 

available information is not sufficient for the definition of an imprecise concept by means 

of a conventional fuzzy set. In fuzzy sets the degree of acceptance is only considered but 
IFS is characterized by a membership function and a non-membership function so that the 

sum of both values is less than one [5]. 

Some researchers have used the technique of fuzzy set theory for solving multi-objective 

reliability optimization problems. Sakawa and Yano [6] introduced the fuzzy sequential 
proxy optimization technique for multi-objective decision making and applied it to the 

reliability design of a standby system. 

Dhingra [7] used goal programming and goal attainment formulations under fuzziness in 

multi-objective reliability apportionment problem subject to several design constraints. Rao 

and Dhingra [8] presented the problem of crisp and fuzzy multi-objective optimization in 
the context of reliability and redundancy apportionment of multistage, multi-components 

systems subject to several resource constraints. Huang [9] presented a fuzzy multi-objective 

optimization decision-making method and its application in reliability optimization. Ravi et 
al. [10] presented redundancy allocation on a multistage series-parallel system as a fuzzy 

multi-objective optimization problem where apart from the system reliability, system cost, 

weight and volume are all considered as fuzzy goals/objectives.  

Mahapatra and Roy [11] used fuzzy multi-objective optimization method for the decision 
making of series and complex system cost simultaneously. Pandey et al. [12] presented 

enhanced particle swarm optimization algorithm and it is applied to the reliability 

optimization problem of a multistage mixed system with four different value functions.  

Zio et al. [13] and Kishor et al. [14] used genetic algorithms for multi-objective system 

reliability design optimization. 

Now intuitionistic fuzzy optimization (IFO) is an open field for research work. Very little 
research work has been carried out on IFO. Angelov [15] proposed a framework of the 

optimization problem under uncertainty in an intuitionistic fuzzy environment.  
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Xu and Yager [16], Li [17] investigated multi-objective intuitionistic fuzzy linear 
programming with its application in transportation model. Liu and Wang [19], Lin et al. 

[20] presented methods for solving multi-criteria environment. Pramanik and Roy [21] 

introduced an intuitionistic fuzzy goal programming approach to vector optimization 
problem. However, it seems that so far there has been little research on multi-criteria/multi-

objective optimization using IFS, which is indeed one of the most important areas in 

decision analysis as most real-world decision problems involve multi-objective 
optimization problem. Use of IFO technique in reliability optimization model is very rare 

in literature. 

In this book, a solution procedure of a multi-objective nonlinear programming problem 

using IFO technique is considered. Here we consider the problem of finding the optimum 

reliability and cost of system subject to retain the goal of system space. This multi-objective 
non-linear programming problem is solved by IFO technique. This book envisages the 

application of IFO in the context of reliability apportionment for a multistage, multi-

component system. 

5.2 Multi-Objective Reliability Optimization Model Description: 

Notations  

Reliability optimization model in intuitionistic fuzzy environment is developed and worked 

out under the following notations: 

R = (R1, …, Rn)
 T: decision vector 

Rs(R): function of system reliability 

Cs(R): function of system cost 

Vs(R): function of system space 

Parameters for ith (= 1, …, n) item are, 

Ri: reliability of ith component as decision variables  

Ci: cost of ith component 

Vi: space of ith component 

Vs: system space goal. 

The size of the system, the intricacy of the specific functions, cost of the components, and 
the degree of hostility of the system’s environment all influence the reliability. Consider a 

complex system where the system reliability has to be maximized and the system cost is to 

be minimized simultaneously subject to system goal of space.  
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Therefore, we have to find maximum system reliability Rs(R) and minimum system cost 
Cs(R) subject to the system space Vs(R) as a target goal. So, the model becomes a multi-

objective reliability optimization problem as follows 

   Maximize Rs(R)       

 (1) 

   Minimize Cs(R)        

Subject to Vs(R) ≤ Vs 

R = (R1, …, Rn)
 T and Ri > 0.5 for i = 1, …, n. 

To avoid mathematical complexity, we transfer above minimization problem in to 

maximization problem to form one type optimization problem.  

Therefore, the reliability model becomes 

  Maximize Rs(R)      

 (2) 

  Maximize C's(R) = - Cs(R) 

Subject to Vs(R) ≤ Vs  

R = (R1, ..., Rn)
 T and Ri > 0.5 for i = 1, …, n. 

The complex system is modelled as a five-stage combination reliability model.  

The objective is to determine an optimal reliability of the system and minimize the system 

cost simultaneously such as size of the system is restricted within the system space goal. 

5.2.1 Reliability of Reliability Model of an LCD Display Unit: 

We are looking at the overall reliability for a LCD display unit [22] that consists of a display, 

backlighting panel, and a number of circuit boards with the following setup: 

S1  LCD panel with hardware reliability R1. 

S2 A backlighting board with 10 bulbs with individual bulb reliability R2 such that the 

board functions with at most one bulb failure. 

S3 Two microprocessor boards A and B hooked up in parallel, each of reliability R3. 

S4 Dual power suppliers in a standby redundancy, with reliability R4 for each power 

supply, perfect switching being assumed. 



Mathematical Programming on Reliability Optimization Model 

59 

 

S5  EMI board reliability R5 hooked up in series with common input of the power 

supply A. 

The schematic diagram [22] is constructed as shown in figure 5.1. 

 

Figure 5.1: Combination Reliability Model of an LCD Display Unit. 

There are five basic pieces in this model, and a generalized formula for the reliability of this 

model can be viewed somewhat in a serial fashion as  

Rs = S1 x S2 x S3 x S4 x S5, where Si, i = 1, …, 5 are as follows: 

S1 = R1  (LCD circuit board) 

S2 = R10
2 + 10R9

2 (1 – R2) (Backlighting panel) 

S3 = 1 – (1- R3)
2   (Microprocessors A and B) 

S4 = R4 + R4 In(1/R4)  (Power supply A and B) 

S5 = R5    (EMI board) 

We now multiply each of the terms listed for Rs(R) 

Thus, we get  

Rs(R) = R1 (R
10

2 + 10R9
2(1 – R2)) (1 – (1-R3)

2) (R4+R4In(1/R4)) R5  (3) 

Combined models get quite complicated, as can be seen above;  

more complex models can arise when there are conditional situations or changing states. 

5.2.2 Cost Function of Reliability Model of An LCD Display Unit: 
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  5 

i = 1 

  5 

i = 1 

Generally, the rise in cost of a system is likely to increase sharply with the increase in 
reliability and can be expected to be especially steep after a certain stage. With this idea in 

view, we model the cost function as an increasing function of reliability as follows: 

 

  Cs(R) = ∑ Ci [tan((π/2) Ri] αi      

 (4) 

R = (R1, R5)
 T, 0.5 ≤ Ri ≤ 1, 0.5 ≤ Rs ≤ 1 for i = 1, …,5. 

5.2.3 Space Function of Reliability Model of a LCD Display Unit: 

In is natural to expect the space occupied by a system to be more if it is more sophisticated 

and reliable (except in the event of some major technological breakthrough).  

So, one can consider the space function as an increasing function of reliability. Here we 

considered space constraint as follows: 

 

   Vs(R) = ∑ ViRi
ai ≤ Vs      

 (5) 

R = (R1, R5)
 T, 0.5 ≤ Ri ≤ 1, 0.5 ≤ Rs ≤ 1 for i = 1, …,5.  

5.3 Mathematical Analysis 

Definition 1: Let a set X be fixed. An IFS Ãi in X is an object having the form  

Ãi = {(x, μÃ(x), υÃ(x)): x  X} where μÃ(x):X → [0, 1] and υÃ(x):X →[0, 1] define the 

degree of membership and degree of non-membership respectively, of the element x  X to 

the set Ãi, which is a subset of X, for every element of x  X, 0 ≤ μÃ(x) + υÃ(x) ≤ 1. 

5.3.1 Intuitionistic Fuzzy Non-Linear Programming Technique to Solve Multi-

Objective Non-Linear Programming Problem: 

A multi-objective non-linear programming (MONLP) may be taken in the following form: 

Maximize f(x) = [f1(x), f2(x), …, fk(x)] T     (6) 

Subject to x  X = {x  Rn: gj(x) ≤ or = or ≥ bj for j = 1, …, m; 1i ≤ xi ≤ ui for i = 1, 2, …, 

n}. 
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x1 

x2 

… 

xk 

To solve the MONLP (6) problem, following Zimmermann [23] and Angelov [15], we have 
presented a solution procedure to solve the MONLP problem by IFO technique, and the 

following steps are used: 

Step 1: Solve the MONLP (6) as a single objective non-linear problem k time for each 

problem by taking one of the objectives at a time and ignoring the others. 

These solutions are known as ideal solutions. Let xi be the respective optimal solution for 
the ith different objective and evaluate each objective values for all these ith optimal 

solutions. It is assumed that at least two of these solutions are different for which the ith 

objective function has different bounded values. 

Step 2: From the result of Step 1, determine the corresponding values for every objective 

for each derived solution. With the values of all objectives at each ideal solution, pay-off 

matrix can be formulated as follows: 

    f1(x)   f2(x) …  fk(x) 

    

 

 

 

 

Here x1, …, xk are the ideal solutions of the objectives f1(x),fk(x) respectively. 

For each objective fi(x), find lower bound (minimum) Li
acc and the upper bound (maximum) 

Ui
acc. But in IFO the degree of non-membership (rejection) and degree of membership 

(acceptance) are considered so that the sum of both values is less than one [2]. To define 

the non-membership function of MONLP problem, let Li
rej and Ui

rej be the lower and upper 

bond of the objective function fi(x) where Li
acc ≤ Li

rej ≤ Ui
rej ≤Ui

acc.  

Find the worst (Ui) and the best (Li) values of each objective for the degree of acceptance 

and rejection corresponding to the set of solutions as Ui
acc = max{f*i(x

k)} and Li
acc = minr=1, 

2,,i-1,i+1,…,k{fi(x
r)} for i=1, 2, …,k for degree of acceptance of objectives. It is known from the 

theorem that 

Theorem 1: For objective function of maximization problem, the upper bound for non-
membership functions (rejection) is always less than that the upper bound of membership 

functions (acceptance). 

Proof: (See Appendix-I) 

f*1(x
1) f2(x

1) …. fk(x
1) 

f1(x
2)  f*2(x

2) … fk(x
2) 

……………………………… 

f1(x
k)  f2(x

k)… f*k(x
k) 
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fi(x) – Li
acc 

Ui
acc - Li

acc 

Ui
rej - fi(x) 

Ui
rej - Li

rej 

So, one can take the lower and upper bound for the non-membership function as follows 

Ui
rej = Ui

acc – εi where εi = (Ui
acc – Ui

rej) for i = 1, …, k based on the decision maker choice. 

And Li
rej = Li

acc. 

Step 3: The initial intuitionistic fuzzy model with aspiration levels of objectives becomes  

Find {xi, i = 1, …, k}        

 (7) 

So as to satisfy 

fi(x) ≤ Li
acc with tolerance (Ui

acc – Li
rej) for the degree of acceptance for i = 1, …, k. 

fi(x) ≥ Ui
rej with tolerance (Ui

rej – Li
rej) for the degree of rejection for i = 1, …, k. 

define the membership and non-membership functions of above uncertain objectives as 

follow: 

for the ith (i = 1,…,k) objectives functions the membership function μi(fi(x)) are taken as 

following linear functions 

   0   if fi(x) ≤ Li
acc 

 

  μi(fi(x)) =     if Li
acc ≤ fi(x) ≤ Ui

acc 

 

   1   if fi(x) ≥ Ui
acc   

 

And  

   0   if fi(x) ≥ Ui
rej 

 

  υi(fi(x)) =     if Li
rej ≤ fi(x) ≤ Ui

rej 

 

   1   if fi(x) ≥ Li
rej   
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Rough sketch of the membership function and non-membership function for maximization 

type objective function are shown in figure 2. 

 

Figure 5.2: Rough Sketch of Membership and Non-Membership Functions of 

Objective Function. 

Step 4: Now an IFO technique [15] for MONLP problem with the membership and non-

membership functions can be written as 

    Maximize μi(fi(x))      (10) 

    Minimize υi(fi(x)) 

Subject to  

    μi(fi(x)) ≥ υi(fi(x)) 

   μi(fi(x)) + υi(fi(x)) < 1 

   υi(fi(x)) ≥ 0 

   gj(x) ≤ bj, x ≥ 0 

for i = 1, 2,,k; j= 1,2,…,m. 

In IFO technique we have to maximize μi(fi(x)) and minimize υi(fi(x)) simultaneously. 
These optimize membership function and non-membership functions provide solution of 

objective function fi(x). However, when the objective functions of the MONLP conflict with 

each other, a complete optimal solution does not always exist and hence the Pareto 
optimality concept arises. Following Sakawa [24, 25], the IFO is applied for multi-objective 

programming problem the notion of Pareto optimal solution determined in terms of 

objective functions is not applicable. Hence the concept of intuitionistic fuzzy Pareto or M-

N refers to membership and non-membership function. Some basic definitions on Pareto 

optimal solutions in IFO environment are introduced below.  
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 k 

i=1 

Definition 2: M-N Pareto Optimal Solution 

x*  X is said to be an M-N Pareto optimal solution to the intuitionistic fuzzy non-linear 
programming (IFNLP) (10) if and only if there does not exist another xεX such that μi(fi(x)) 

≥ μi(fi(x*)), υi(fi(x)) ≥ υi(fi(x*)) for all i=1, 2,…,k and μi(fi(x)) ≠ μi(fi(x*)), υi(fi(x)) ≠ 

υi(fi(x*)) for at least one j, j  {1, 2,…,k}. 

Definition 3: Weak M-N Pareto Optimal Solution  

x*  X is said to be an M-N Pareto optimal solution if and only if there does not exist another 

xεX such that μi(fi(x)) > μi(fi(x*)), υi(fi(x)) < υi(fi(x*)) for all i=1, 2, k. 

 If the decision-maker selects the additive operator, the problem to be solved is an 
equivalent crisp model by using the membership and non-membership functions of 

objectives by IFO as follows: 

  

    Maximize ∑ {μi(fi(x)) - υi(fi(x))}    (11) 

Subject to same constraint and restriction as in (10) 

Step 5: Solve the above (11) crisp model by an approximate mathematical programming 

algorithm to get M-N Pareto optimal solution. Some basic theorems on M-N Pareto optimal 

solutions are introduced below. 

Theorem 2: The solution of (7) based on max-min operator of IFNLP problem (11) is 

weakly M-N Pareto optimal. 

Proof: Let x*  X be a solution of the IFNLP problem. Let us suppose that it is not weakly 

M-N Pareto optimal. In this case, there exists a solution x  X such that fi(x) > fi(x*) for all 

i = 1, 2, …,k. Observing that μi(fi(x)) is a strictly monotone increasing function with respect 
to fi(x) this implies μi(fi(x)) > μi(fi(x*)) and υi(fi(x)) is a strictly monotone decreasing 

function with respect to fi(x), which implies υi(fi(x)) < υi(fi(x*)). Thus, we have minμi(fi(x)) 

> minμi(fi(x*)) and maxυi(fi(x)) < maxυi(fi(x*)) and. This is a contradiction to the 

assumption that x* is a solution of the IFNLP problem. Thus x* is weakly M-N Pareto 

optimal. 

Theorem 3: The unique solution of IFNLP problem (10) is M-N Pareto optimal. 

Proof: Let x*  X be a unique solution of the IFNLP problem. Let us suppose that it is not 

M-N Pareto optimal. In this case, there exists a solution x  X such that μi(fi(x)) ≥ μi(fi(x*)), 

υi(fi(x)) ≤ υi(fi(x*)) for all i=1, 2, …,k and μj(fj(x)) > μj(fj(x*)), υj(fj(x)) < υj(fj(x*)) for at 
least one j. Noting that μi(fi(x)) is a strictly monotone increasing function with respect to 

fi(x), this implies μi(fi(x)) < μi(fi(x*)) for some i=1, 2,…,k and υi(fi(x)) is a strictly monotone 

decreasing function with respect to fi(x), which implies υi(fi(x)) < υi(fi(x*)) for some i=1, 

2,..,k.  
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R1 

R2 

Rs(R) – L1
acc 

U1
acc – L1

acc 

Thus we have mini=1,2,…,kμi(fi(x)) ≥ mini=1,2,…,kμi(fi(x*)) and maxi=1,2,…,kυi(fi(x)) ≤ 
maxi=1,2,…,kυi(fi(x*)) and maxi=1,2,…,kυi(fi(x)) ≤ maxi=1,2,…,kυi(fi(x*)). On the other hand, the 

uniqueness of x* meaning that mini=1,2,…,kμi(fi(x*)) > mini=1,2,…,kμi(fi(x')) and 

maxi=1,2,…,kυi(fi(x)) < maxi=1,2,…,kυi(fi(x*)) and for all x'  X. The two sets inequalities above 

are contradictory and thus, x* must be M-N Pareto optimal. 

5.4 Intuitionistic Fuzzy Optimization Technique on Reliability Optimization 

Model: 

We have to find maximum system reliability Rs(R) and minimum system cost Cs(R) (which 
is equivalent to C's(R) = -Cs(R)) subject to the system space Vs(R) goal Vs. So, the problem 

is a multi-objective reliability optimization problem as follows 

    Maximize Rs(R) 

    Maximize C's(R)     

 (12) 

Subject to Vs(R) ≤ Vs            R= (R1, Rn) T and Ri > 0.5 for i=1,n. 

To solve the above MOROP (12), step 1 of (6.1) is used. After that according to step 2 pay-

off matrix is formulated as follows: 

    Rs(R)  C's(R) 

 

5 

Now U1
acc, L1

acc, U2
acc, L2

acc (where L1
acc ≤ Rs(R)acc ≤U1

acc and L2
acc ≤ C's(R)acc ≤ U2

acc) and 

U1
rej, L1

rej, U2
rej, L2

rej (where L1
acc ≤ Rs(R)rej ≤U1

rej and L2
acc = L2

acc ≤ C's(R)rej ≤ U2
rej) Uirej = 

Ui
acc – εi for i=1, 2; where 0 < εi < (Ui

acc – Ui
rej) are identified. Here for simplicity linear 

membership function μRs(Rs(R)), μC's(C's(R)) and linear non-membership function 

υRs(Rs(R)), υC's(C's(R)) for the objective functions Rs(R) and C's(R) respectively, are defined 

as follows: 

   0   if Rs(R) ≤ L1
acc 

 

   μRs(Rs(R))=     if L1
acc ≤ Rs(R) ≤ U1

acc 

 

   1   if Rs(R) ≥ U1
acc   

R*s(R*) C's(R) 

Rs(R)  C'*s(R*) 
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C's(R) –L2
acc 

U2
acc – L2

acc 

U1
rej – Rs(R) 

U1
rej – L1

rej 

U2
rej –C's(R) 

U2
rej – L2

rej 

   0   if C's(R) ≤ L2
acc 

 

   μC's(C's(R))=     if L2
acc ≤ C's(R) ≤ U2

acc 

 

   1   if C's(R) ≥ U2
acc   

   1   if Rs(R) ≤ L1
rej 

 

   υRs(Rs(R))=     if L1
rej ≤ Rs(R) ≤ U1

rej 

 

   0   if Rs(R) ≥ U1
rej   

And  

   1   if C's(R) ≤ L2
rej 

 

   υC's(C's(R))=     if L2
rej ≤ C's(R) ≤ U2

rej 

 

   0   if C's(R) ≥ U2
rej   

According to IFO technique, having elicited the above membership and non-membership 

function for MOROP (12) crisp nonlinear programming problem is formulated as follows 

Maximize (μRs(Rs(R)) + μC's(C's(R)) – υRs(Rs(R)) – υC's(C's(R)))  (13) 

Subject to 

  υRs (Rs (R)), υC's(C's(R)) ≥ 0, 

 μRs (Rs (R)) ≥ υRs(Rs(R)), 

 μC's (C's (R)) ≥ υC's(C's(R)), 

 μRs (Rs (R)) + υRs(Rs(R)) < 1, 
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 5 

i=1 

 5 

i=1 

 μC's (C's (R)) + υC's(C's(R)) < 1, 

    Vs(R) ≤ Vs, 

R= (R1, …, Rn) T and Ri > 0.5 for i=1, n. 

Solve the above crisp model by an appropriate mathematical programming algorithm to get 

M-N Pareto optimal solution of objective functions i.e., system reliability and system cost. 

Numerical Solution of Reliability Model of LCD Display Unit: 

The system reliability, cost, and space are constrained by the design. So, the reliability 

allocation for five stages combine system is given by  

Maximize Rs(R) = R1 (R
10

2 + 10R9
2 (1-R2)) x (1 – (1-R3)

2) (R4 + R4 In(1/R4)) R5  

 

Maximize C's(R) = - ∑ Ci [tan((π/2) Ri)] αi     (14) 

 

Subject to Vs(R) = ∑ ViRi
ai ≤ Vs  

 

For R=(R1, R5)
T and Ri > 0.5 for i=1, …,5. 

The input data for the MOROP (14) is given as follows: The cost and space of each 

component is C1 = 40, C2 = 30, C3 = 35, C4 = 36, C5 = 32 and V1 = 6, V2 = 4.75, V3 = 2, V4 

= 3, V5 = 7 respectively. 

The shape parameters are ai = 1 and αi = 0.75 for all i=1,5.  

Let the space goal of the system is Vs = 22 units. 

Solution: According to step 2 pay-off matrix is formulated as follows: 

    Rs(R)   C's(R)  

 

 

Here, U1
acc = 0.9457139, L1

acc = L1
rej = 0.001705135, U2

acc = -172.8623, L2
acc = L2

rej = -

6564.526, U1
rej = 0.9457139 – ε1 and U2

rej = -172.8623-ε2.  

0.9457139           -6564.526 

0.001705135 -172.8623 

R1 

R2 
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Rs(R) – 0.001705135 

0.944008765 

C's(R) – (-6564.526) 

-172.8623 –(-6564.526) 

0.9457139 – ε1-Rs(R) 

0.944008765 – ε1 

-172.8623 –ε2-C's(R) 

    6391.6637-ε2 

Here linear membership and non-membership functions for the objective functions Rs(R) 

and C's(R) respectively, are define as follows: 

   0   if Rs(R) ≤ 0.001705135 

 

   μRs(Rs(R))=            if  0.001705135≤ Rs(R) ≤ 0.9457139 

 

   1   if Rs(R) ≥ 0.9457139 

   0   if C's(R) ≤ -6564.526 

 

   μC's(C's(R))=      if -6564.526≤ C's(R)≤ -172.8623 

 

   1   if C's(R) ≥ -172.8623 

   1   if Rs(R) ≤ 0.001705165 

 

   υRs(Rs(R))=         if 0.001705135 ≤ Rs(R) ≤ 0.9457139-ε1 

 

   0   if Rs(R) ≥ 0.9457139 – ε1  

And  

   1   if C's(R) ≤ -6564.526 

 

   υC's(C's(R))=          if -172.8623-ε2≤ C's(R) ≤ -6564.526 

 

   0   if C's(R) ≥ -172.8623-ε2 
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Ui
rej - fi(x) 

Ui
rej - Li

rej 

fi(x) – Li
acc 

Ui
acc - Li

acc 

Ui
acc - fi(x) 

Ui
acc - Li

rej 

fi(x) – Li
acc 

Ui
acc - Li

acc 

Now IFO technique for MOROP (14) with this membership and non-membership functions 
can be solving for different value of ε1 and ε2. The M-N Pareto optimal solution of the 

MONLP model (14) using intuitionistic fuzzy multi-objective nonlinear programming (IF-

MONLP) technique is given in table 1. The solution obtained by IFMONLP technique is 
compared with solution obtained by fuzzy multi-objective nonlinear programming 

(FMONLP) technique of the same MOROP (14) model. 

Table 5.1: Comparison of optimal solution of MOROP (14) based on different method. 

Method R*1 R*2 R*3 R*4 R*5 R*5(R*

) 

C*5(R*)

$ 

FMONLP 0.9215
1 

0.9583
3 

0.8771
4 

0.8231
8 

0.9295
8 

0.77357 1338.35 

IFMONL

P 

0.9321

3 

0.9626

2 

0.8706

9 

0.8395

3 

0.9391

4 

0.80533 1514.9 

Here we get best solution for the tolerance ε1 = 0.125 and ε2 = 1340 for non-membership 

function of the objective functions. Form the Table 1, it shows that IFMONLP technique 

gives better Pareto optimal result in the perspective of system reliability. 

Appendix  

Theorem 1: For objective function of maximization problem, the upper bound for non-

membership function (rejection) is always less that the upper bound of membership 

function. 

Proof: Form definition of intuitionistic fuzzy set, sum of the degree of rejection and 

acceptance is less than unity. 

  μi(fi(x)) + υi(fi(x)) < 1 for all i=1, 2, …, k. 

or   +       < 1 

 

 

Case I. If possible, let Ui
rej = Ui

acc then we have    

 

  +   < 1 this gives Li
rej < Li

acc which is contradicting  
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Ui
rej - f(x) 

Ui
rej - Li

acc 

f(x) – Li
acc 

Ui
acc - Li

acc 

Ui
rej - f(x) 

Ui
rej - Li

acc 

f(x) – Li
acc 

Ui
acc - Li

acc 

Ui
rej - fi(x) 

fi(x) – Li
acc - εi 

the fact that lower bound of the membership and non-membership function is equal. Hence 

Ui
rej ≠ Ui

acc  

Case II. Let us consider Li
rej = Li

acc then we have  

 

  +   < 1 which imply that Ui
rej < Ui

acc  

 

Case III. Let us consider Li
rej = Li

acc + εi, εi > 0 for all i=1, 2,k then we have  

 

  +   < 1 which imply that Ui
rej > Ui

acc  

 

 

   + εi        

 

i.e., Ui
acc > Ui

rej. Hence Ui
acc > Ui

rej (proof) 
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Chapter 6 

Chapter 6: Problem with Intuitionistic Fuzzy 

Numbers 

6.1 Introduction: 

Modelling a financial or a production planning problem needs some prior information about 

its feasibility and possible outcome. In many situations, it also needs financial analysis about 

resource utilization and optimal profit or gain. Such analysis needs the complete information 
about various parameters such as profit coefficients, resource limitations, constraints as well 

as its objectives and other goals. As a matter of fact, in real life production planning 

problems, it is often difficult to get discrete and exact information for various parameters 

affecting the process. Even in many situations the information available are imprecise or 
vague. Under such situations it is difficult to have the mathematical formulation to solve 

the mathematical programming problem using a linear programming technique. For such 

situations, fuzzy set developed by Zadeh [22] played a vital role in modelling the 
optimization problem having imprecision in parameters and was initiated by Zimmermann 

[23, 24, 25] as fuzzy linear programming problem. 

One of the major difficulties to study such fuzzy linear programming problems with fuzzy 

coefficients is how to compare these fuzzy numbers. Thus, an important issue of ranking of 
fuzzy numbers and its approximation method took considerable interest amongst the 

researchers. Some of the authors who made significant contributions in the area are Dubois 

and Prade [10], Heliperrn[15], Adrian[1,2]. This growing discipline attracted many authors 

to extend the theory of fuzzy sets to various application areas of industrial planning, 
production planning, agricultural production planning, economics etc. Atanossov [4, 5] 

extended the fuzzy set theory to intuitionistic fuzzy sets.  

This extended new set, name as intuitionistic fuzzy set, has a feature to accommodate 

hesitation factor of including an element in a fuzzy set apart from the feature of degree of 
belonging and non-belonging. This extension of fuzzy set to intuitionistic fuzzy set attracted 

research workers as well as planners to apply this new set in the field of decision sciences.  

Thus, an extension of deterministic optimization to intuitionistic fuzzy optimization was 

initiated by Angelov [3]. The Angelov study was motivated by Zimmermann visualization 

of a fuzzy set to explain the degree of satisfaction of respective condition and was expressed 

by their membership function.  

Angelov [3] in his study extended the Bellman and Zadeh [6] approach of maximizing the 

degree of (membership function) acceptance of the objective functions and constraints to 

maximizing the degree of acceptance and minimizing the degree of rejection of objective 

functions and constraints. 
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In view of its suitability of intuitionistic fuzzy set-in modelling systems having imprecise 
parameters, a considerable research work has been carried out in the direction of ranking of 

intuitionistic fuzzy numbers.  

Further development of approximation methods is needed for development of intuitionistic 

optimization techniques (please see Hassan [14], Grzegorzewski [13], Parvathi and Malathi 
[21]. Nishad et al. [7, 20] have also worked on developing the ranking method for 

intuitionistic fuzzy numbers and have applied it on intuitionistic fuzzy optimization.  

There are many more authors, who worked on the ranking methods and approximation of 

intuitionistic fuzzy number (please see Inuiguchi and Tanaka [16]).  

Recently Dubey et al [11, 12] have studied fuzzy linear programming with intuitionistic 

fuzzy numbers. The present work is a motivation towards the application of intuitionistic 
fuzzy numbers to optimization problem and develops a computational method for solution 

of such optimization problems.  

The study is presented in the following sections: Section 2 is preliminaries to intuitionistic 

fuzzy set and intuitionistic fuzzy numbers needed for consequent sections. Section 3 
comprise of modelling of an intuitionistic fuzzy optimization problem and its solution 

algorithm.  

Section 4 illustrates the implementation of the theory developed in section 3 to a linear 

programming problem as well as to a multi objective linear programming problem. Last 

section presents the results of the undertaken problem and provides a brief discussion on 

the developed method. 

6.2 Preliminaries:  

Definition 1. Fuzzy Set 

Let X is a collection of objects denoted by x, then a fuzzy set Ã in X is a set of ordered 

pairs: Ã = {(x, μÃ(x)) | x  X}, where μÃ(x) and υA(x) are called the membership and non-

membership functions of x in Ã respectively. 

Where μA:X → [0, 1] and υA: X → [0, 1] and μÃ(x) + υA(x) ≤ 1 

Definition 3. Trapezoidal Intuitionistic Fuzzy Number (TIFN) 

An intuitionistic fuzzy set (IFS), Ã = {(x, μÃ(x), υA(x)) | x  X} on R is said to be an 
intuitionistic fuzzy number, if μA(x) and υA(x) are membership and non-membership 

function respectively and υA ≤ μA
c where μA

c denotes the complement of μA. 

A trapezoidal intuitionistic fuzzy number with parameters a' ≤ a ≤ b ≤ c ≤ d ≤ d' denoted by 

Ã = < (a, b, c, d, μA), (a', b, c, d', υA) > is an intuitionistic fuzzy set on real line R whose 

membership and non-membership functions are defined as follows: 
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(x – a) 

w 

(b – a) 

(d –x) w 

(d – c) 

 

Figure 6.1: Membership and non-membership function of Trapezoidal Intuitionistic 

Fuzzy Number 

 

        if a ≤ x < b 

 

    μÃ(x) =  w    if b ≤ x < c 

 

        if c ≤ x < d 

 

 

        if a' ≤ x < b 

 

    υÃ(x) =  u    if b ≤ x < c 

 

        if c ≤ x < d' 

 

Here, the values w and u represent the maximum degree of membership and the minimum 

degree of non-membership function, respectively, such that 0 ≤ w + u ≤ 1. 

(x – a’) u + (b – x) 

        (b – a') 

(x – d’) u + (c – x) 

        (c – d') 



Problem with Intuitionistic Fuzzy Numbers 

75 

 

(x – a)w 

(b – a) 

(d –x) w 

(d – b) 

Definition 4. Triangular Intuitionistic Fuzzy Number (TrIFN) 

A trapezoidal Intuitionistic fuzzy number, becomes a triangular intuitionistic fuzzy number 
by setting b = c and hence parameters become a' ≤ a ≤ b ≤ d ≤ d' and is denoted by Ã = < 

(a, b, d, μA), (a', b, d', υA) > 

 

Figure 6.2: Membership and Non-Membership Function of Triangular Intuitionistic 

Fuzzy Number 

      

          if a ≤ x < b 

 

    μÃ(x) =  w    if x = b 

 

        if b ≤ x < d 

and  

        if a' ≤ x < b 

 

    υÃ(x) =  u    if    x = b 

 

        if b ≤ x < d' 

 

Definition 5. Expected Interval of Fuzzy Number 

(x – a’) u +(b – x) 

        (b – a') 

(x – d’) u +(c – x) 

        (c – d') 
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a2 

a1 

a4 

a3 

x – a1 

a2 – a1 

x – a4 

a3 – a4 

One approach to approximate a fuzzy number in deterministic form is expected interval 
EI(Ã) value. The theory of expected interval of a fuzzy number was introduced by Dubois, 

Prade and Heilpern. Dubois and Prade [11] considered the approximation of a fuzzy number 

as a mean value of fuzzy number and give a rigorous definition for mean value of a fuzzy 
number and give a rigorous definition for mean value is preserved in possibilistic frame 

work. Later on, Heilpern [15] in his study defined the expected value of a fuzzy number vai 

a random set and introduced two notations, the expected interval and the expected value of 

the fuzzy number. He defined the expected value of a fuzzy number as a centre of the 
expected interval of such a number. A fuzzy number Ã = < (a1, a2, a3, a4) > as interval fuzzy 

number can be written as  

EI(Ã) = [E* (Ã), E* (Ã)], 

 

Where E*(Ã) = a2 - ∫  far(x) dx and E*(Ã) = a3 - ∫ gÃ(x) dx. 

 

Here, the two function fÃ(x) and gÃ(x) are defined as  

 

  fÃ(x) =   , gÃ(x) =   

 

Definition 6.  Expected Interval for Intuitionistic fuzzy number  

Let there exist number: a1, a2, a3, a4, b1, b2, b3, b4  R such that a1 ≤ a2 ≤ a3 ≤ a4 ≤ b1 ≤ b2 ≤ 

b3 ≤ b4 with four functions fÃ, gÃ, hÃ, kÃ : R → [0, 1], out of which fÃ and kÃ are non-

decreasing and gÃ, hÃ are non-increasing functions, then an intuitionistic fuzzy number Ã = 
{x, μÃ(x), υÃ(x) | x  X} is defined by its membership and non-membership function as 

given as 

   fÃ(x)    if a1 ≤ x ≤ a2 

   1   if a2 ≤ x < a3 

 μÃ(x) =   

   gÃ(x)   if a3 ≤ x ≤ a4 

   0   otherwise 

and  
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a2 + b1 

    2 

b2 

b1 

a2 

a1 

b4 +a3 

    2 

a4 

a3 

b4 

b3 

x – b1 

b2 – b1 

x – a1 

a2 – a1 

x – a4 

a3 – a4 

x – b4 

b3 – b4 

a + b1 

    2 

a 

b1 

a 

a1 

b2 +a 

    2 

a2 

a 

b2 

a 

3a+b1+(a-b1)υÃ-(a-a1)μÃ 

    4 

   hÃ(x)    if b1 ≤ x ≤ b2 

   0   if b2 ≤ x < b3 

 μÃ(x) =   

   kÃ(x)   if b3 ≤ x ≤ b4 

   1   otherwise 

The expected interval of the intuitionistic fuzzy number Ã = < (a1, a2, a3, a4), (b1, b2, b3, b4) 

> introduced by Grzewski [13] is a crisp interval and is defined as EI(Ã) = [E*(Ã), E*(Ã)], 

 

  E*(Ã) =   + 
1

2
  ∫  hÃ(x) dx - 

1

2
 ∫ fÃ(x)dx 

 

  E*(Ã) =   + 
1

2
  ∫  gÃ(x) dx - 

1

2
 ∫ kÃ(x)dx 

and  

 hÃ(x) =   , fÃ(x) =   , gÃ(x) =  , kÃ(x) = 

  

Definition 7. Expected Interval for a triangular Intuitionistic fuzzy number 

If Ã = < (a1, a, a3; μÃ), (b1, a, b2; υÃ) > is triangular intuitionistic fuzzy number then the 

above definition of expected interval of triangular intuitionistic fuzzy number produces 

EI(Ã) = [E*(Ã), E*(Ã)] 

Were  

  E*(Ã) =   + 
1

2
  ∫  hÃ(x) dx - 

1

2
 ∫ fÃ(x)dx  

 

    =  

 

  E*(Ã) =   + 
1

2
  ∫  gÃ(x) dx - 

1

2
 ∫ kÃ(x)dx 
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3a+b2+(a2-a) μÃ+(a-a1)υÃ 

    4 

              E*(Ã) – E*(B) 

 (E*(Ã)-E*(B)-(E*(Ã)-E*(B)) 

 

  =  

Definition 8. Ranking of Intuitionistic fuzzy number with expected interval 

For any pair of intuitionistic fuzzy number Ã and B with respective expected intervals EI(Ã) 

= [E*(Ã), E*(Ã)] and EI(B) = [E*(B), E*(B)] 

(i) Ã > B iff E*(Ã) > E*(B) 

(ii) Ã = B iff E*(Ã) = E*(B) and E*(Ã) = E*(B) 

In a situation where the above definition fails, then degree satisfactory method at which Ã 

is bigger than or equal to B is defined as  

     1      if E*(Ã) – E*(B) > 0 

   

μE(Ã, B) =      if 0  [E*(Ã)–E*(B), E*(Ã)-

E*(B)]  

 

   0     if E*(Ã) – E*(B) < 0 

          

 (1) 

Here, μE(Ã, B) ≥ α, represented as Ã is bigger than or equal to B at least to a degree α. 

6.3 Problem Formulation:  

Consider a multi-objective linear programming problem with k objectives and m constraints 

in n decision variables and is given as  

Optimize Zk(X) = Ck(X) 

Subject to  

 AX (≥, =, ≤) b 

 X ≥ 0         

 (2) 
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Where X  Rn, bT  Rm, CT
R  Rn and A be a m x n technological matrix. (≥, =, ≤) denotes 

that the constraints may be of any of the tree types or may be of all the three types. 

6.3.1 Multi-Objective Linear Programming Problem with The Intuitionistic 

Fuzzy Parameters: 

Let us consider a multi-objective optimization problem with a decision variable, m 

constraints and k functions,  

Maximize Z(X) = {C1, C2, C3, …, Ck}X 

s.t. ÃiXj (≥, =, ≤) bi  i=1, 2, 3, …, m 

 Xj ≥ 0  j = 1, 2, 3, n      (3) 

Where X = {x1, x2, x3, …., xn}, Ck (k = 1, 2, …k) and bi (i=1, 2, 3, m) are n dimensional and 

m dimensional vectors respectively, Ã is a m x n matrix with intuitionistic fuzzy parameter 

and bi and ck are intuitionistic fuzzy numbers. Since the above problem (3) have 

intuitionistic fuzzy numbers. Since the above problem (3) have intuitionistic fuzzy 
coefficients which have possibilistic distribution in an uncertain interval and hence may be 

approximated in terms of its expected intervals. 

Let EI(Ã) be expected interval of intuitionistic fuzzy number Ã defined by the definition 

(7) and is given as  

EI(Ã) = [E*(Ã), E*(Ã)] 

Where E*(Ã) and E*(Ã) are the lower and upper bound of the expected interval EI(Ã) of 

intuitionistic fuzzy number. 

Since Ck the coefficients of the objective function are intuitionistic fuzzy numbers, expected 
interval of Ck can be defined as EI(Ck) = [E*(Ck), E*(Ck)] where E*(Ck) and E*(Ck) is given 

as in definition of expected interval. Thus EI(Ck) is given as in definition of expected 

interval. Thus EI(Ck) can be represented as a closed interval [E*(Ck), E*(Ck)], such that Ck 

 [E*(Ck), E*(Ck)]  

Now the lower and upper bound for the respective expected intervals of the objective 

function are defined as 

[Zk(x)] L = ∑ E𝑛
𝑗=1 *(Ckj)Xj                                                                  (4) 

[Zk(x)] U = ∑ E𝑛
𝑗=1

*(Ckj)Xj                                                                   (5) 

In the next step, we construct a membership function for minimization type objective 

function Zk(X), and then replace by the lower bound of its expected interval that is 
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[Zk(x)] U = ∑ E𝑛
𝑗=1

*(Ckj)Xj                                                                    (6) 

Similarly, we construct a membership function for minimization type objective function 

Zk(x), and then replace by the lower bound of its expected interval is  

[Zk(x)] L = ∑ E𝑛
𝑗=1 *(Ckj)Xj                                                                    (7) 

And the constraint inequalities 

∑ .𝑛
𝑗=1 (Ãij)Xj ≥ Bi  (i = 1, 2, …m1)                                          (8) 

∑ .𝑛
𝑗=1 (Ãij)Xj ≤ Bi  (i = m1 + 1, m1 +2, ….m2)                              (9) 

Which can be written in feasibility degree relation in terms of α-parameteric constraints as  

∑ .𝑛
𝑗=1 [(1-α) E*(Ãij) + αE*(Ãij)] Xj ≥ (1-α) E*(Bi) + αE*(Bi) (i=1, 2, …m1)   

         (10) 

∑ .𝑛
𝑗=1 [(1-α) E*(Ãij) + αE*(Ãij)] Xj ≤ (1-α) E*(Bi) + αE*(Bi) (i=m1+1, m1+2, …m2)  

           

          (11) 

And the intuitionistic fuzzy equality constraint 

∑ .𝑛
𝑗=1 (Ãij)Xj ≥ Bi   (i=m2+1, m2+2, …m)    (12) 

Can be transformed into two intuitionistic fuzzy inequalities as  

∑ .𝑛
𝑗=1 (Ãij)Xj ≥ Bj ≤ (i=m2+1, m2+2, …m)     (13) 

∑ .𝑛
𝑗=1 (Ãij)Xj ≥ Bi ≥ (i=m2+1, m2+2, …m)     (14) 

The above equations can be also written in α-parametric form as equation (10) and (11) 

using ranking function defined in equation (1). 

Thus, the undertaken maximization problem (3) is transformed to an equivalent multi 

objective linear programming problem (MOLPP) as  

[Zk(x)] U = ∑ E𝑛
𝑗=1

*(Ckj)Xj  (k=1, 2, 3, …..K) 

Subject to  

∑ .𝑛
𝑗=1 [(1-α) E*(Ãij) + αE*(Ãij)] Xj ≥ (1-α) E*(Bi) + αE*(Bi) (i=1, 2, …m1) 
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Zk(X) – lk 

(gk – lk) 

∑ .𝑛
𝑗=1 [(1-α) E*(Ãij) + αE*(Ãij)] Xj ≤ (1-α) E*(Bi) + αE*(Bi) (i=m1+1, m1+2, …m2) 

 ∑ .𝑛
𝑗=1 [(1-α) E*(Ãij) + αE*(Ãij)] Xj ≤ (1-α) E*(Bi) + αE*(Bi) (i=m1+1, m1+2, …m2)  

∑ .𝑛
𝑗=1 [(1-α) E*(Ãij) + αE*(Ãij)] Xj ≥ (1-α) E*(Bi) + αE*(Bi) (i=m1+1, m1+2, …n) 

   Xj ≥ 0 (j= 1, 2, 3, n)      (15) 

Now, the problem (15) can be reduced to a deterministic linear programming problem for a 
prescribed value of α and can proceed to solve by applying the fuzzy programming 

techniques. 

Thus, is need to construct a membership function for maximizing type objective function 

by using the best and worst acceptable solution defined as: 

   1    if Zx(X) ≥ gk 

  μZk(x) =      if lk ≤ Zk(X) ≤ gk 

   0    Zk(X) ≤ lk 

Where gk is aspiration level for the kth objective function and the highest acceptable level 

for the kth objective function and the lowest acceptable level lk are ideal and anti-ideal 

solutions and are computed as  

gk = Max  ∑ E𝑛
𝑗=1

*(Ckj)Xj   (k=1, 2, 3, K)    (16) 

with respect to constraints of the problem (14) for value of α = 1. 

Similarly, for maximizing type objective function, an ideal and anti-ideal solution can be 

also defined. 

Now using fuzzy max-min model, the above linear programming problem is converted in 
to single objective linear programming problem and then can be solved for different value 

of α as follows. 

Maximize  λ 

Subject to  

 

      λ ≤ 

Subject to  

Zk(X) – lk 

(gk – lk) 
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∑ .𝑛
𝑗=1 [(1-α) E*(Ãij) + αE*(Ãij)] Xj ≥ (1-α) E*(Bi) + αE*(Bi) (i=1, 2, …m1) 

∑ .𝑛
𝑗=1 [(1-α) E*(Ãij) + αE*(Ãij)] Xj ≤ (1-α) E*(Bi) + αE*(Bi) (i=m1+1, m1+2, …m2) 

 ∑ .𝑛
𝑗=1 [(1-α) E*(Ãij) + αE*(Ãij)] Xj ≤ (1-α) E*(Bi) + αE*(Bi) (i=m1+1, m1+2, …m2)  

∑ .𝑛
𝑗=1 [(1-α) E*(Ãij) + αE*(Ãij)] Xj ≥ (1-α) E*(Bi) + αE*(Bi) (i=m1+1, m1+2, …n) 

   Xj ≥ 0 (j= 1, 2, 3, n)      (18) 

6.4 Illustration: 

Example 1 Consider a linear programming problem in intuitionistic fuzzy environment as  

   Maximize Z = 25x1 + 48x2 

   subject to 15x1 + 30x2 ≤ 45000 

    24x1 + 6x2 ≤ 24000 

    21x1 + 14x2 ≤ 28000    (19) 

       x1, x2 ≥ 0, 

having intuitionistic fuzzy coefficients given as  

25 = < (19, 25, 33; 0.9), (18, 25, 34; 0.1) >, 48 = <(44, 48, 54; 0.9), (43, 48, 56;0.1), >, 15 

= < (14, 15, 17; 0.9), (10, 15, 18; 0) >, 30 = <( 25, 30, 34; 0.9), (23, 30, 38; 0)>, 24 = < (21, 

24, 26; 0.9), (20, 24, 33; 0)>, 6 = < (4, 6, 8; 0.9), (2, 6, 11; 0)>, 21 = <(17, 21, 22; 0.9), (16, 

21, 26; 0)>, 14 = <(12, 14, 19; 0.9), (8, 14, 22; 0)>, 45000 = <(44980, 45000, 45030; 0.9), 
(44970, 45000, 45070; 0)>, 24000 = <(23980, 24000, 24060; 0.9), (23940, 24000, 24060; 

0)>, 28000 = <(27990, 28000, 28030; 0.9), (27950, 28000, 28040; 0)>, respectively, 

Now approximating the above intuitionistic fuzzy numbers by its interval value as described 

in section 2, are written in terms of its expected intervals as  

EI (25) = [22.075, 28.825], EI (48) = [45.975, 51.15], EI (15) = [13.525, 16.2], EI (30) = 
[27.125, 32.9], EI (24) = [22.325, 26.7], EI (6) = [4.55, 7.7], EI (21) = [18.85, 22.475], EI 

(14) = [12.05, 17.125], EI(45000) = [44988, 45024.25], EI(24000) = [23980.5, 24026.25], 

EI(28000) = [27985.25, 28016.75] 

With these expected interval values of intuitionistic fuzzy numbers, the problem (19) is 

transformed in to a α – parametric linear problem defined as. 

Maximize Z = 28.82 x1 + 51.15 x2 
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Subject to  

[(1-α)13.525 + 16.2α]x1 + [(1-α)27.125 + 32.9α]x2 ≤ [(1-α)45024.25 + 44988α] 

[(1-α)22.325 + 26.7α]x1 + [(1-α)4.55 + 7.7α]x2 ≤ [(1-α)24026.25 + 23980.5α] 

[(1-α)18.85 + 22.475α]x1 + [(1-α)12.05 + 17.125α]x2 ≤ [(1-α)28016.75 + 27985.25α] 

    x1, x2 ≥ 0       

 (20) 

To solve this problem, we compute ideal and anti-ideal solution of objective functions as 
described in section 4 and thus computed values comes out to be g1 = 86975.449, l1 = 

62866.215. Now implementing the above developed computational algorithm, the problem 

(20) can be written to an equivalent linear programming problem as  

Maximize λ 

Subject to  

λ – 0.142x1 – 0.064x2 ≤ -0.529 

[(1-α)13.525 + 16.2α]x1 + [(1-α)27.125 + 32.9α]x2 ≤ [(1-α)45024.25 + 44988α] 

[(1-α)22.325 + 26.7α]x1 + [(1-α)4.55 + 7.7α]x2 ≤ [(1-α)24026.25 + 23980.5α] 

[(1-α)18.85 + 22.475α]x1 + [(1-α)12.05 + 17.125α]x2 ≤ [(1-α)28016.75 + 27985.25α] 

    x1, x2 ≥ 0       

 (21) 

This linear programming problem (21) has been solved by MATLAB® for different value 

of α and solution obtained is given in table 1. 

Table 6.1: Optimal solution for different feasibility degree of α 

α x1 x2 Z 

0 624.2 1348.7 86978.57 

0.1 586.9 1333 85100.342 

0.2 551.5 1317.6 83292.227 

0.3 518 1302.7 81564.455 

0.4 486.1 1288.1 79898.147 

0.5 455.9 1273.9 78301.302 

0.6 427.1 1259.9 76755.042 

0.7 399.8 1246.3 75272.48 

0.9 348.9 1220 72460.042 

Example. 2 Consider a multi-objective intuitionistic fuzzy linear programming problem as  
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Maximize Z1 = 4x1 + 2x2 

 Maximize Z1 = 2x1 + 6x2 

Subject to  

    1 x1 + 4 x2 ≤ 28 

    1 x1 + 1 x2 ≤ 10 

    3 x1 + 1 x2 ≤ 24      (22) 

   x1, x2 ≥ 0 

Here, we assume that each of coefficients are triangular intuitionistic fuzzy numbers and 

are given as 

1 = <( 
1

2
 , 1, 

3

2
 ; 0.9), (

1

2
 , 1, 

3

2
 ; 0)>, 2 = <(1, 2, 

5

2
; 0.9), (1, 2, 

5

2
 ; 0)>, 3 = <(2, 3, 5; 0.9), (2, 3, 

5; 0)>, 4 = <(2, 4, 6; 0.9), (2, 4, 6; 0)>, 6 = <(4, 6, 8; 0.9), (4, 6, 8; 0)>, 10 = <(8, 10, 11; 

0.9), (8, 10, 11; 0.9), (8, 10, 11; 0)>, 24 = <(20, 24, 26; 0.9), (20, 24, 26; 0)>, 28 = <(23, 28, 

31; 0.9), (23, 28, 31; 0)>, respectively, 

Approximating the above intuitionistic fuzzy numbers by its interval value as given in 

section II,  

their respective expected intervals are given as 

EI (1) = [0.762, 1.237], EI (2) = [1.525, 2.237], EI (3) = [2.525, 4], EI (4) = [3.05, 4.95], EI 

(6) = [5.05, 6.95], EI (10) = [9.05, 10.47], EI (24) = [22.1, 24.95], EI (28) = [25.625, 29.425], 

Using these approximated expected intervals of intuitionistic fuzzy numbers, the problem 

(22) is transformed in to an equivalent multi-objective α-parametric linear programming 

problem defined as. 

Maximize Z1 = 4.95 x1 + 2.237x2 

Maximize Z2 = 2.237x1 + 6.95x2 

Subject to  

[(1-α)0.762 + 1.237α]x1 + [(1-α)3.05+ 4.95α]x2 ≤ [(1-α)29.425 + 25.625α] 

[(1-α)0.762 + 1.237α]x1 + [(1-α)0.762 + 1.234α]x2 ≤ [(1-α)10.47 + 9.05α] 

[(1-α)2.525 + 4α]x1 + [(1-α)0.762 + 1.237α]x2 ≤ [(1-α)24.95 + 22.1α] 
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    x1, x2 ≥ 0       

 (23) 

Now, we calculate ideal and anti-ideal solutions for each of objective functions of the above 

MOLP as described in section III and thus computed values comes out to be 

  g1 = 53.019, l1 = 18.359, g2 = 69.781, l2 = 26.892, respectively. 

Now implementing our developed computational algorithm, the problem (23) can be written 

to an equivalent linear programming problem as  

Maximize  λ 

Subject to  

λ – 0.142x1 – 0.064x2 ≤ -0.529 

λ – 0.052x1 – 0.161x2 ≤ -0.626 

[(1-α)0.762 + 1.237α]x1 + [(1-α)3.05 + 4.95α]x2 ≤ [(1-α)29.425 + 25.625α] 

[(1-α)0.762 + 1.237α]x1 + [(1-α)0.762 + 1.237α]x2 ≤ [(1-α)10.47 + 9.05α] 

[(1-α)2.525 + 4α]x1 + [(1-α)0.762 + 1.237α]x2 ≤ [(1-α)24.95 + 22.1α] 

    x1, x2 ≥ 0       

 (24) 

This linear programming problem has been solved by MATLAB® for different value of α 

and solutions obtained are given in table 2. 

Table 6.2: Optimal solution for different α-feasibility degree 

 α x1 x2 Z1 Z2 

     

0 6.608 7.131 48.661 64.34 

0.1 6.103 6.663 45.114 59.960 

0.2 5.646 6.239 41.904 55.991 

0.3 5.244 5.866 39.080 52.499 

0.4 4.876 5.524 36.493 49.29 

0.5 4.549 5.220 34.194 46.155 

0.6 4.246 4.939 32.066 43.824 

0.7 3.974 4.687 30.156 41.415 

0.8 3.721 4.452 28.378 39.265 

0.9 3.491 4.239 26.763 37.270 
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6.5 Result and Discussion: 

The developed algorithm uses the α-degree feasibility of linear intuitionistic fuzzy 

programming problem. We compare the results obtained in table 1 and table 2 with that of 

results of Dubey and Kuwano method. Clearly the level of satisfaction of each objective 

function by the proposed method is higher than the previous results. Thus, for modelling 
the optimization problems having vegueness and imprecision in information with 

intuitionistic fuzzy optimization approach may be considered as an alternative method to 

see optimal values. the proposed algorithm is more suitable to find the optimal solutions of 
the problems having intuitionistic fuzzy coefficients arising in production planning 

problems, financial planning problems, agricultural production planning problems and 

many other real world multi-objective programming problems. One of the interesting 
features of the α feasible solutions in both case of linear programming problem as well as 

in multi-objective linear programming problem, the values of the objective functions 

decrease with increase of α values of α. Thus, solution give an insight on the degree of 

vagueness and the possible feasible solutions. Hence, the present study provides solution to 
the problem with various degree of feasibility in the situation of imprecision in parameters. 

Thus, the decision maker has enough information about the feasible solutions ranging from 

best to worst to take appropriate decision according to the situation. 
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Chapter 7 

Chapter 7: Conclusion  

In many real-life optimization problems, the parameters are often imprecise and are difficult 

to be represented in discrete quantity. One of the approaches to model such situation is 

considering these imprecise parameters as intuitionistic fuzzy numbers and then 
approximating these by its expected interval value. Further in process of solution, 

membership function for each objective function is constructed by computing best and 

worst acceptable solutions and deal the constraints of the problem with ranking of 

intuitionistic fuzzy number with a concept of feasibility degree. The paper presents a 
computational algorithm for solution of objective functions at different feasibility degree. 

The developed algorithm has been illustrated by implementing on a linear programming 

problem as well as on a multi objective linear programming problem (MOLPP) in 

intuitionistic fuzzy environment. 

 



 

 

 

 


