
Digital Transformation in Sustainable Growth (DTSG 2022)   https://www.kdpublications.in 

ISBN: 978-81-19149-52-0 

96 

 

12. MADA: Malware Application Detection 

Approach in Android using SVM and ANN Model 

Prasun Dutta, Dhritiman Mukherjee 

Department of Computer Science and Engineering,  

Amity University,  

Kolkata, West Bengal, India. 

Siddhartha Chatterjee 

Department of Computer Science and Engineering,  

IMPS College of Engineering and Technology, 

Malda, West Bengal, India. 

Sutapa Bhattacharya 

Department of Computer Science and Engineering,  

Siliguri Institute of Technology, 

Siliguri, West Bengal, India. 

Abstract: 

Advancements in growing technology and amidst the ongoing covid-pandemic period, the 

room for malware applications present in the internet world will only keep increasing. To 
tilt the scale against cybercriminals various improvements are constantly being made to 

detect malware applications and one of these techniques is the state of the art in machine 

learning. Various efforts are being made to improve the predictions both via static and 
dynamic analysis using appropriate feature sets and classification models. In an effort 

toward this direction, many researchers are working on the effective prediction of 

smartphone malware.  

In this paper, one of the newer datasets namely CICInvesAndMal2019 has been used to 

extract the permission data of the apps from the manifest.xml files to perform static analysis 
on the same. These permission data have been trained with Support Vector Machine (SVM) 

and Artificial Neural Networks (ANN) (classification models) and further fine-tuned using 

two popular hyperparametric tuning algorithms namely grid search and genetic algorithm 

for SVM only to classify the nature of apps.  

An accuracy of greater than 95% has been achieved, which is on par with some previous 

work. 
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12.1 Introduction: 

One of the most popular operating systems in the market of smartphones is undeniably the 

Android operating system ruling over about 70% of the mobile market share. With the 

technological advancements throughout all these years, the features of the smartphones have 

only kept improving and have almost reached a point where they are inseparable from our 
lives, even more so during these years of the covid pandemic where it has acted as a tool 

and kept the people connected with their friends as well as with their job routines.  

However, these technological advancements have also facilitated cybercrimes to a certain 

extent, and it becomes all the more important for a smartphone user to have the updated 
knowledge of these crimes and take the required precautionary measures to avoid falling 

into the traps laid by these cybercriminals. One of the categories of cybercrimes known as 

PUP (Potentially Unwanted Programs) refers to the set of malicious applications which are 

developed by cybercriminals to fetch hidden personal information from the users for their 

own monetary gains.  

In this paper, the CICInvesAndMal2019 (Laya Taheri et al., 2019) dataset has been used to 

extract the permission data of the apps from the manifest.xml files to perform the static 

analysis. The analysis is carried out by training these permission data using classification 
models (SVM and ANN) and finally fine-tuning the results using two popular 

hyperparametric tuning algorithms namely grid search and genetic algorithm in order to 

classify the apps as malign or benign. The remaining paper is structured in the following 
manner: First the paper will highlight the related studies with respect to this field. Next, the 

paper will focus on the methodology used for performing this analysis. This is followed by, 

analysis of the results. Finally, the paper is concluded with a small note on scope of future 

work. 

12.2 Related Study: 

In one of the papers titled “Android Malware Detection Using Deep Learning”, the authors 

make use of the deep learning technique namely Gated Recurrent Unit (GRU) on the 

CICAndMal2017 dataset for malware detection in android applications. They made use of 

two static features namely Permissions and Application Programming Interface (API) from 
the applications and were successfully able to detect malware with an accuracy of 98.2%. 

(Omar N. Elayan & Ahmad M. Mustafa, 2021). 

In another paper titled “Android Malware Detection Using Machine Learning”, the authors 

came up with a system wherein the user can see the percentage of malicious content of an 
android application. The system has a user-friendly Graphic User Interface (GUI) and 

performs permission-based and semantic analysis on applications to produce the desired 

output to user. (Rishab Agrawal et al., 2020). In the paper titled “Android Malware 

Classification Using Machine Learning and Bio-Inspired Optimisation Algorithms”, the 
authors made use of the permissions and class file of android applications to detect malware 

in the applications. They made use of various machine learning algorithms like SVM, SGD 

in combination with various bio-optimized algorithms like Particle Swarm Optimization, 

Genetic Algorithm, etc. for enhanced results.  
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These were tested on three datasets namely CICInvesAndMal2019, KuafuDet and Andro-
Dump. For each of the mentioned datasets the best accuracy was achieved on Andro-Dump 

dataset using SGD with an accuracy of 99.6%. (Jack Pye et al., 2020). 

12.3 Methodology: 

12.3.1 Dataset: 

The dataset used for the android malware detection analysis is CICInvesAndMal2019. The 
dataset consists of permissions and intents of 426 malware and 5,065 benign applications 

as static features. The samples of Malware that the dataset consists of are Adware, 

Ransomware, Premium SMS, SMS and Scareware. A tool named Androguard has been 

used in this paper for extracting permission-based features from different apps. On the other 

hand, the Jupyter notebook has been used for data preparation and model training. 

12.3.2 Data Preprocessing: 

In the data pre-processing step, the values which are missing and possible outliers are taken 

care of. However, the dataset used in this paper had no values missing nor were there any 

outliers as a result none of the attributes were omitted. For the analysis purpose though, only 

the permission data was used and therefore all the additional data were neglected. 

12.3.3 Classification Models: 

In this paper two classification models have been used, whose working and implementation 

in accordance to our extracted permission dataset are explained below: 

12.3.4 Support Vector Machine (SVM): 

 The SVM systematically classifies the data points by first starting with data that are 
relatively in the lower dimensions which are the permission feature vectors of the 

smartphone applications, then it elevates them into a higher dimension followed by 

systematic segregation of the higher dimensional data into two categories (benign and 
malignant for this case) with the help of kernel function. One of the major kernel functions 

which has been used for SVM is the Radial Basis Function (RBF) which helps with 

computing the relationships between observations (permission related data points) in higher 

dimensions. The Radial Basis Function has been considered for training the model due to 
the fact that it is one of the main functions as it has fewer hyperparameters than the 

polynomial kernels, it non-linearly maps samples into higher dimensional space and faces 

fewer numerical difficulties. (Durgesh K Srivastava et al., 2010). 

12.3.5 Artificial Neural Network (ANN):  

The Artificial Neural Network used in training the model in this paper consists of the main 
units which are referred to as perceptron’s (permission feature vector in this analysis) and 

each of these are further connected to others in different layers.  
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These interconnections among so many perceptrons are referred to as multiple perceptron 
interconnections or in other terms ANN. The ANN passes on the data taken by input 

perceptrons to others in successive layers before it reaches the final set of perceptrons in 

this case the two nodes classifying the app into malignant or benign in the output layer (refer 
to Figure 12.1). The activation function in ANN determines if a node (malignant or benign) 

has to be fired or not.  

For this analysis, the Rectified Linear Unit (ReLU) activation function was used as it has 

faster computation compared to Tanh and Sigmoid also it is one of the most used activation 

functions in the world right now. (Chigozie Nwankpa et al., 2020). 

12.3.6 Hyperparameter Tuning: 

For this analysis, in order to obtain the best possible results for the classification models 

(SVM and ANN), hyperparametric tuning has been used. The two algorithms implemented 

here are as follows: 

12.3.7 Grid Search:  

The algorithm goes through all the different combinations of hyperparameters. Followed by 
evaluating the performance value for each of these combinations and selects the best 

possible combination as hyperparameter (refer to Figure 12.2 for flow chart of grid search 

with respect to malware detection).  

The analysis makes use of the GridSearchCV () method available in the scikit-learn class 

model_selection. It consists of 4 main arguments which are: 

• estimator: it refers to the model instance (SVM and ANN in this case) for which the 

hyperparameters are check against. 

• param_grid: it is a dictionary with parameter names as keys and a list of parameter 
values. Here the param_grid is made accordingly for the SVM and ANN models. 

• scoring: it refers to performance measure metric. For this analysis, scoring has been 

equated to none. 

• cv: an integer representing the number of K fold cross-validation. For the SVM model 

5-fold cross-validation was used before outputting the best set of hyperparameters. 

12.3.8 Genetic Algorithm:  

This algorithm is a subset of evolutionary algorithms used in computation. This algorithm 

produces plenty of possible solutions to a given problem.  

These solutions further down the line undergo recombination and mutation, producing new 
off-springs and this process is repeated over several generations unless it reaches a fitter 

generation of individuals, and the entire process ends when a stopping criterion is met. 

(Refer to Figure 12.3 for a detailed flow chart of genetic algorithm with respect to malware 

detection). 
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12.4 Result Analysis: 

The analysis was performed on Windows operating system having 16GB RAM running on 

an i3 processor. (Table 13.1 gives an overview of the evaluated results and results of some 

previous work). 

12.4.1 Support Vector Machine (SVM): 

For this classifier model, the permission data was split into – 80% for training and 20% for 
testing the model, along with 5-fold cross-validation which implies one part was used for 

testing and the remaining 4 parts were used as training set. This model was then further fine-

tuned using grid search and genetic algorithm. Finally, cross-checking was done with the 

fine-tuned model by feeding it some random malware and benign apps to check if it 

correctly classifies them or not. (Refer to Figure 12.4). 

12.4.2 Grid Search: 

For grid search the Param grid parameter was defined as follows: 

{'C': [0.1, 1, 10, 100, 1000],], 'kernel': ['rbf'’], 'gamma': [1, 0.1, 0.01, 0.001, 0.0001]} 

Here: 

• ‘C’ is the penalty parameter to control the error. 

• ‘gamma’ defines the influence of each training session on the data points. 

• ‘kernel’ refers to the kernel function used for the SVM. 

On running the grid search algorithm using GridSearchCV () method, following result was 
obtained as the best hyperparameter values: {'C’: 10, 'kernel': 'rbf', ‘gamma’: 0.1} which in 

turn gave an F1 score of 94. 

12.4.3 Genetic Algorithm: 

For the genetic algorithm, the parameters under it are defined as follows: total generations 

(halting criteria – 7th generation) = 7, population size (number of chromosomes in 
population) = 200, number of children (created during crossover) = 5, mutation rate 

(probability of chromosome mutation) = 5%. On running the algorithm with this defined set 

of parameters, it resulted in an F1 score of 95.  

12.4.5 Artificial Neural Network: 

For this classifier model too the permission data was split into – 80% for training and 20% 
for testing the model. This model was then further fine-tuned using grid search and as a 

final step cross-checking was done using the fine-tuned model by feeding it random 

malware and benign apps so as to check if it correctly classifies them or not. (Refer to Figure 

12.4). 



MADA: Malware Application Detection Approach in Android using SVM and ANN Model 

101 

 

12.4.5 Grid Search: 

For grid search algorithm we defined the param_grid as follows: 

{'learning_rate': [‘constant’, ‘adaptive’, ‘invscaling’], 'activation': [‘identity’, ‘tanh’, 

‘logistic’, ‘relu’], 'solver': ['adam', ‘lbfgs’, ‘sgd’], ‘hidden_layer_sizes’: [3, 10, 20]} 

Here: 

• learning rate: it determines how quickly or slowly an ANN learns a problem. 

• activation: refers to the set of activation function which has to be used while training 
the ANN. 

• solver: refers to stochastic gradient descent (SGD) based optimizer for optimizing the 

parameter. 

• hidden_layer_sizes: represents the number of neurons to be used in a given hidden layer. 

For this model only one layer of hidden layer was used. 

On running the grid search algorithm using GridSearchCV () method, following result was 

obtained as the best hyperparameter values: {'learning_rate': ‘constant’, 'activation': ‘relu’, 

‘solver’: 'lbfgs', ‘hidden_layer_sizes’: 20} which in turn gave a F1 score of 94.3. 

12.5 Conclusion: 

This research made use of the CICInvesAndMal2019 dataset to extract the permission data 

out of the manifest.xml files of the android applications. Further, these extracted permission 

data were trained using SVM and ANN classification models and fine-tuned using grid 
search and genetic algorithm. Even with the limited computational resources of our laptop 

system both the hyperparametric algorithms managed to bring an improvement in the 

model’s classification accuracy for both SVM and ANN when grid search and genetic 
algorithm were used. In future, this research could be extended to other new updated 

datasets of the upcoming years and an in-depth analysis can be conducted i.e., by exploring 

the other classification models, feature selection techniques and improving further on the 
hyperparametric tuning factor in a more computationally powerful system so as to get the 

best classification predictions from these models. 
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Table 12.1: Overall Classifier Evaluation Metrics for our work as well as some previous 

work. 

Paper Dataset ML 

Algorithm 

Accuracy F1-

Score 

Recall Precision 

Elayan et 

al 

CICAndMal2017 Gated 

Recurrent 

Unit 

98.2 98 

 

99.2 96.9 

Taheri et 
al 

CICInvesAndMal2019 Random 
Forest 

N.A. N.A. 95.3 95.3 

Chen et al. KuafuDet Random 
Forest 

96.35 N.A. N.A. N.A. 

Pye et al CICInvesAndMal2019 SVM + 
ABC 

Optimization 

95.7 92 92 92 

Pye et al KuafuDet Neural 
Network 

94.9 96.7 98.8 94.7 

DREBIN          DREBIN          SVM 93 N.A. N.A. N.A. 

Fatima et 

al 

N.A. SVM + 

Genetic 
Algorithm 

95 N.A. N.A. N.A. 
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Paper Dataset ML 

Algorithm 

Accuracy F1-

Score 

Recall Precision 

Fatima et 

al 

N.A ANN + 

Genetic 
Algorithm 

94.1 N.A. N.A. N.A. 

Our Work CICInvesAndMal2019   SVM + Grid 

Search 

95 94 93 93 

 

Figure 12.1: Architecture of Artificial Neural Network in Proposed Work. 

 

Figure 12.2: Grid Search, Working Flow Diagram  
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Figure 12.3: Genetic Algorithm, working flow diagram 

 

 

Figure 12.4: SVM and ANN Predict the App Classes Malware or Not Based on Their 

Permission Access Values.  


