
 

 

 



 

 

 

PYTHON  
PROGRAMMING  

FOR CHEMIST 

 

Dr. Manash Protim Borpuzari 

Assistant Professor 

Department of Chemistry 

Dhemaji College 
(Dhemaji, Assam, India) 

 

 

 

 

 

 

 

 

 

 

 

Kripa-Drishti Publications, Pune. 



 

 

Book Title:  Python Programming for Chemist 
Author By:  Dr. Manash Protim Borpuzari 

  

 

 

Price:  399  

 
1st Edition 

ISBN: 978-81-968830-6-5 

 
Published: Dec 2023 
 

 

 

 

 

 

 
Publisher: 

 

Kripa-Drishti Publications 

A/ 503, Poorva Height, SNO 148/1A/1/1A,  
Sus Road, Pashan- 411021, Pune,  
Maharashtra, India. 
Mob: +91-8007068686 
Email: editor@kdpublications.in 

Web: https://www.kdpublications.in 

 

Copyright Dr. Manash Protim Borpuzari 

All Rights Reserved. No part of this publication can be stored in any retrieval system or 
reproduced in any form or by any means without the prior written permission of the 
publisher. Any person who does any unauthorized act in relation to this publication may 
be liable to criminal prosecution and civil claims for damages. [The responsibility for the 
facts stated, conclusions reached, etc., is entirely that of the author. The publisher is not 
responsible for them, whatsoever.] 

mailto:editor@kdpublications.in
https://www.kdpublications.in/


 

 

PREFACE 

This eight-chapter journey dives into the exciting intersection of Python 

and chemistry, empowering readers to explore and understand the 

molecular world through code. It equips chemists with the tools and skills 
to unlock the secrets of molecules, predict their behavior, and design 

innovative solutions for real-world challenges. 

Chapter 1 and 2: Lay the foundation by introducing NumPy for powerful 

scientific calculations and Pandas for data organization and analysis. 
You'll learn to navigate chemical datasets, manipulate data, and visualize 

insights with plots and graphs. 

Chapter 3 and 4: Delve into the realm of cheminformatics, mastering 

RDKit, the virtual chemist's assistant. You'll build and manipulate 

molecules, calculate properties, visualize 3D structures, and perform 

similarity searches to identify related molecules. 

Chapter 5 and 6: Step into the world of molecular modeling. You'll 

explore force fields, simulate the movement of molecules with molecular 

dynamics, and predict how ligands bind to their protein targets with 
docking software. Open Babel allows seamless navigation between 

different molecular file formats, while high-performance computing and 

quantum chemistry simulations unlock the mysteries of complex 

systems. 

Chapter 7 and 8: Witness the transformative power of Python in action. 
You'll discover how it accelerates drug discovery, designs advanced 

materials, guides sustainable chemistry practices, and even enables 3D 

printing personalized medicine. Looking ahead, the future promises AI-
powered chemical brains, quantum computers unlocking the mysteries 

of the microscopic world, and ethical considerations shaping the 

responsible use of these powerful tools. 

 

 



 

 

Throughout the book, you'll encounter: 

• Engaging examples and exercises: Put your newfound knowledge 
into practice with real-world scenarios and problems. 

• Accessible explanations: Complex concepts are broken down and 

explained in simple terms, making the book approachable for 

chemists of all levels. 

• Open-source tools and resources: Utilize freely available software 
libraries and online platforms to delve deeper and collaborate with 

the broader scientific community. 

Overall, this book is more than just a technical manual. It's an invitation 

to explore, innovate, and push the boundaries of what's possible in the 

dynamic world of chemistry. With Python as your guide, you'll have the 
power to uncover the secrets of molecules, design life-changing 

solutions, and shape the future of this ever-evolving field.



 

 

 

 

 

 

Dedicated. in deepest Gratitude, 

To My Mother and Father 

And 

To My Significant One 

Alful Koushik Goswami



 

 

Acknowledgement 

I thank the All-Powerful God for allowing me to finish the this book. I 

would like to take this opportunity to thank you very much to the many 

teachers of D.K.D College and Department of Chemistry, Dibrugarh 

University for providing me all the knowledge in Chemistry. My 

heartfelt gratitude and deepest regard go to my guides, Dr. Rahul Kar 

(Dibrugarh University, Assam), who has been a great source of 

inspirationfor this book. I thank all teachers and my colleagues of 

Dhemaji College, Dhemaji for provinding me the strength and support. I 

thank all the family and friends who assisted with devoting time to 

completing my book and helping me express my deep gratitude to my 

parents for their guidance and sacrifice. Finally, I wish to express my 

deepest gratitude to all the authors of this book for proving all the 

support. 

Many thanks to my wife Alful Koushik Goswami for proving all the 

support. 

 

Dr. Manash Protim Borpuzari 

  



 

 

 

 

INDEX 

Chapter 1: Stepping into the Lab of Python: Data Types, 

Operators, and Control Flow ................................................... 1 

1.1 The Elements of Python: ....................................................... 1 

1.2 The Tools of Transformation: Operators ................................ 2 
1.3 Building Your Expertise: Examples and Problems................. 2 

1.4 Mastering the Flow: Control Structures ................................. 4 
1.5 Functions: Reusable Code Blocks.......................................... 5 

1.6 Modules: Libraries of Code ................................................... 6 
1.7 Exercises: .............................................................................. 6 

1.8 Conclusion: ........................................................................... 7 

Chapter 2: Wielding the Numbers: NumPy for Efficient 

Scientific Computing ................................................................. 8 

2.1 Array Alchemy: The Power of NumPy Arrays ...................... 8 

2.1.1 Creating Arrays: ................................................................ 8 
2.1.2 Indexing and Slicing: Extracting Data with Precision ........ 9 

2.1.3 Numerical Operations: Unleashing the Power of Math .... 10 
2.1.4 Matrices: Solving Chemical Gleichungen with Ease ......... 10 

2.2 Case Study: Simulating Titration Curves ............................. 11 

Chapter 3: Data Exploration and Analysis: Pandas for the 

Curious Chemist ..................................................................... 13 

3.1 Unveiling the DataFrame: A Chemist's Toolbox for Handling 

Data….. .................................................................................... 13 
3.2 Exploring the Datascape: Navigating and Understanding Your 

Data…. ..................................................................................... 14 
3.3 Manipulating Molecules of Data: Shaping and Transforming 

Your DataFrame ....................................................................... 14 
3.4 Visualizing Chemical Insights: Seaborn for Stunning Plots . 15 



 

 

3.5 Case Study: Analyzing Reaction Kinetics Data ................... 15 
3.6 Exercises: ........................................................................... 16 

3.7 Conclusion: ........................................................................ 17 

Chapter 4: Unlocking the Molecular World: Cheminformatics 

with Python ............................................................................. 18 

4.1 Mastering Molecular Representations: RDKit, the Virtual 

Chemist .................................................................................... 18 
4.2 Case Study: Virtual Screening for Drug Discovery ............. 20 

4.3 Exercises: ........................................................................... 22 
4.4 Conclusion: ........................................................................ 22 

Chapter 5: Unveiling the Molecular Dance: Molecular 

Modeling with Python ............................................................ 23 

5.1 The Stage is Set: Choosing Your Simulation Toolbox ......... 23 

5.2 Open Babel: The Universal Translator for Molecular 

Languages ................................................................................ 24 

5.3 Conformations Galore: Exploring the Shapes of Molecules 24 
5.4 Docking the Puzzle Pieces: Predicting Molecular 

Interactions… ........................................................................... 25 
5.5 Exercises: ........................................................................... 26 

5.6 Conclusion: ........................................................................ 26 

Chapter 6: Conquering Complexity: Scaling Up with Python 

in Chemistry ........................................................................... 27 

6.1 Libraries of Giants: Leveraging High-Performance Computing 

(HPC).. ..................................................................................... 27 
6.2 Quantum Chemistry Strikes Back: Simulating Electronic 

Worlds...................................................................................... 28 
6.3 Machine Learning Alchemists: Predicting, Discovering, and 

Designing ................................................................................. 29 
6.4 Collaborating Beyond Borders: Open-Source Ecosystems for 

Sharing and Scaling .................................................................. 30 
6.5 Case Study:......................................................................... 31 



6.6 Exercises: ............................................................................ 31 
6.7 Conclusion: ......................................................................... 32 

Chapter 7: Beyond the Lab: Real-World Applications of 

Python in Chemistry ............................................................... 33 

7.1 Virtual Drug Hunters: Accelerating the Quest for Cures ...... 33 
7.2 Materials Architects: Designing the Future with Code ......... 34 

7.3 Green Crusaders: Protecting the Planet with Python ............ 34 
7.4 Case Study: 3D Printing Personalized Medicine with 

Python…. .................................................................................. 35 
7.5 Exercises: ............................................................................ 36 
7.6 Conclusion: ......................................................................... 36 

Chapter 8: Gazing into the Crystal Ball: Future Directions, 

Challenges, and Opportunities for Python in Chemistry ...... 37 

8.1 Artificial Intelligence: The Rise of the Chemical Brain ....... 37 
8.2 Quantum Computing: Unlocking the Secrets of the 

Universe…. ............................................................................... 38 
8.3 Ethical Considerations: Navigating the Moral Maze ............ 39 

8.4 Conclusion: A Canvas of Endless Possibilities .................... 40 

Glossary of Relevant Chemical and Programming Terms: .. 41 

Recommended Resources for Further Learning and 

Exploration: ............................................................................ 43 

 

 



Python Programming for Chemist https://www.kdpublications.in 

ISBN: 978-81-968830-6-5  

1 

 

Chapter 1 

Chapter 1: Stepping into the Lab of Python: Data 

Types, Operators, and Control Flow 

Welcome, chemists! As you step into the fascinating world of 

Python programming, this chapter lays the foundation for your 

computational journey. Here, you'll encounter the language's 

building blocks: data types, operators, and control flow. Think of 

them as your microscopes, beakers, and Bunsen burners, essential 

tools for manipulating information and solving chemical problems. 

1.1 The Elements of Python: 

Imagine a well-equipped chemistry lab. Each reagent has its 

specific properties and purpose. Similarly, Python uses data types 

to categorize and handle information. Let's meet some essential 

ones: 

• Numbers: Familiar companions from your equations, like 

integers (1, 2, 3) and floats (1.25, 3.14). 

• Strings: Sequences of characters representing text or formulas 

("H2O", "Molecule1"). 

• Booleans: The binary switch of logic, either True or False, 

used for comparisons. 



Python Programming for Chemist 

2 

 

• Lists: Ordered collections of values, like a series of 

measurements (["pH", 5.2, 7.1]). 

• Tuples: Similar to lists but immutable (fixed) after creation, 

useful for constants (("Element", "Atomic mass")). 

1.2 The Tools of Transformation: Operators 

Just as chemical reactions involve specific tools, Python uses 

operators to modify and manipulate data. Let's explore some key 

ones: 

• Arithmetic Operators: + (addition), - (subtraction), * 

(multiplication), / (division), ** (exponentiation) for 

calculations. 

• Comparison Operators: == (equal)! = (not equal), < (less 

than), > (greater than), <= (less than or equal), >= (greater than 

or equal) for logical comparisons. 

• Logical Operators: and, or, not for combining comparisons 

and building complex conditions. 

• Assignment Operators: = (assigns value), += (increments), -= 

(decrements) for storing and modifying data. 

1.3 Building Your Expertise: Examples and Problems 

Time to put your newfound knowledge into practice! Let's solve 

some simple problems using data types and operators: 



Stepping into the Lab of Python: Data Types, Operators, and Control Flow 

3 

 

Problem 1.1: Calculate the molar mass of water (H2O) with atomic 

masses of H (1.008) and O (15.999). 

Solution: 

h_mass = 1.008 

o_mass = 15.999 

water_mass = 2 * h_mass + o_mass          # Multiply H mass by 2 

due to 2 H atoms 

print (f"Molar mass of water: {water_mass}") 

 

Problem 1.2: Check if a measured pH (5.4) falls within the 

acceptable range for growing yeast (4.0 - 6.0). 

ph = 5.4 

min_ph = 4.0 

max_ph = 6.0 

is_suitable = min_ph <= ph <= max_ph # Use combined 

comparison 



Python Programming for Chemist 

4 

 

if is_suitable: 

print ("pH is suitable for yeast growth!") 

else: 

print ("Adjust pH for optimal yeast growth.") 

1.4 Mastering the Flow: Control Structures 

Now, imagine designing complex experiments. You need control 

over the sequence of your actions. Python offers control flow 

structures like conditional statements (if/else) and loops 

(for/while) to navigate such situations. 

• If/else statements: Let you make decisions based on 

conditions. If a temperature exceeds a threshold, an alarm 

might be triggered. 

• For loops: Repeat a set of commands a specific number of 

times. Iterate through a list of molecule names to print their 

structures. 

• While loops: Continue looping until a condition becomes false. 

Analyze data until a desired convergence point is reached. 

Problem 1.3: Calculate the average molecular weight of three 

compounds in a list: ["Ethanol", "Methane", "Carbon dioxide"]. 



Stepping into the Lab of Python: Data Types, Operators, and Control Flow 

5 

 

compounds = ["Ethanol", "Methane", "Carbon dioxide"] 

molecular_weights = {"Ethanol": 46.07, "Methane": 16.04, 

"Carbon dioxide": 44.01} 

total_weight = 0 

for compound in compounds: 

         total_weight += molecular_weights[compound] 

average_weight = total_weight / len(compounds) 

print (f"Average molecular weight: {average_weight}") 

1.5 Functions: Reusable Code Blocks 

Just as chemists often create routines for common procedures, 

Python offers functions to encapsulate reusable code blocks. This 

promotes code organization and efficiency. 

def calculate_molar_mass(compound, atomic_masses): 

"""Calculates the molar mass of a compound.""" 

total_mass = 0 

for element, count in compound.items(): 



Python Programming for Chemist 

6 

 

       total_mass += atomic_masses[element] * count 

return total_mass 

1.6 Modules: Libraries of Code 

To handle specialized tasks, Python provides modules, pre-written 

code collections for specific domains. For chemistry, we'll utilize 

NumPy, SciPy, and Matplotlib extensively. 

import numpy as np  # Import the NumPy library 

# Generate an array of random pH values 

ph_values = np.random.rand(10) * 4 + 4  # Values between 4 and 

8 

# Calculate the mean pH using a NumPy function 

mean_ph = np.mean(ph_values) 

1.7 Exercises: 

1. Write a function to determine the charge of an ion given its 

formula and the charges of its constituent elements. 

2. Import the Matplotlib library and create a plot of a molecule's 

vibrational spectrum, given a list of frequencies and intensities. 



Stepping into the Lab of Python: Data Types, Operators, and Control Flow 

7 

 

3. Use NumPy to generate a linear sequence of temperatures from 

25°C to 100°C with 5°C intervals. 

Remember: Practice makes perfect! Engaging with examples and 

problems solidifies your understanding and prepares you for more 

complex tasks ahead. 

1.8 Conclusion: 

Congratulations on completing Chapter 1! You've now acquired 

fundamental Python skills and applied them to chemical problems. 

In subsequent chapters, we'll delve into specialized libraries for 

numerical computations, data analysis, cheminformatics, and 

molecular modeling. Prepare to unlock the power of Python for 

exciting chemical research! 

 



Python Programming for Chemist https://www.kdpublications.in 

ISBN: 978-81-968830-6-5  

8 

 

Chapter 2 

Chapter 2: Wielding the Numbers: NumPy for 

Efficient Scientific Computing 

Welcome back to the Python lab, chemists! In Chapter 1, we laid 

the foundation with data types, operators, and control flow. Now, 

we'll equip ourselves with a powerful tool for scientific 

computations: The NumPy library. Imagine it as a high-tech lab 

assistant, expertly handling arrays, matrices, and complex 

calculations with remarkable speed and efficiency. 

2.1 Array Alchemy: The Power of NumPy Arrays 

Think of an array as a multidimensional spreadsheet, storing 

numbers in rows and columns. NumPy elevates arrays beyond 

simple data containers, offering efficient operations and powerful 

functionalities. 

2.1.1 Creating Arrays: 

NumPy provides various ways to create arrays: 

# From a list of numbers 

array1 = np. array ([1, 2, 3, 4, 5]) 



Wielding the Numbers: NumPy for Efficient Scientific Computing 

9 

 

# With specific dimensions and values 

array2 = np. zeros ((3, 4)) # A 3x4 array filled with zeros 

array3 = np. ones ((2, 5), dtype=int) # A 2x5 array filled with ones 

(integer type) 

# Random numbers within a range 

array4 = np. random. rand (10) # 10 random floats between 0 and 

1 

2.1.2 Indexing and Slicing: Extracting Data with Precision 

Arrays offer convenient ways to access and manipulate specific 

elements:  

Indexing: Use square brackets with indices (starting from 0) to 

access individual elements. 

element = array1[2] # Access the third element (index 2) 

row = array2[1] # Access the second row 

Slicing: Extract sub-arrays using colon (:) to specify start and end 

indices (exclusive for end). 



Python Programming for Chemist 

10 

 

sub_array = array1[1:3] # Extract elements from index 1 to 2 

(excluding 3) 

column = array2[: 2] # Extract all elements from the third column 

2.1.3 Numerical Operations: Unleashing the Power of Math 

NumPy lets you perform calculations on entire arrays element-

wise, saving you from tedious loops. 

Basic operations: Addition (+), subtraction (-), multiplication (*), 

division (/), exponentiation (**) apply to all elements. 

double_array = array1 * 2 

sum_of_rows = array2.sum(axis=1) # Sum each row (axis=1) 

Advanced operations: Dot product (np.dot), element-wise 

comparisons, trigonometric functions, and many more are readily 

available. 

2.1.4 Matrices: Solving Chemical Gleichungen with Ease 

Matrices, two-dimensional arrays, play a crucial role in 

representing chemical systems and solving equations. NumPy 

simplifies matrix operations: 



Wielding the Numbers: NumPy for Efficient Scientific Computing 

11 

 

Matrix creation and operations: Addition, subtraction, 

multiplication, and inverse calculations are readily available. 

coefficient_matrix = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) 

inverse_matrix = np.linalg.inv(coefficient_matrix) 

product_matrix = coefficient_matrix @ inverse_matrix # Matrix 

multiplication 

Solving linear systems: Use np. linalg. solve to find solutions to 

systems of linear equations, crucial for reaction kinetics and 

equilibrium calculations. 

reaction_coefficients = np. array ([1, -2, 1]) 

initial_concentrations = np. array ([10, 5, 2]) 

equilibrium_concentrations = np. linalg. solve (coefficient_matrix, 

reaction_coefficients * initial_concentrations) 

2.2 Case Study: Simulating Titration Curves 

Let's put our NumPy skills to the test! Simulate a titration curve, a 

fundamental technique in analytical chemistry. We'll track the pH 

change upon adding increasing volumes of base to an acidic 

solution. 



Python Programming for Chemist 

12 

 

# Define initial parameters 

acid_concentration = 0.1 # M 

base_concentration = 0.2 # M 

pKa = 4.5 

volume_range = np. linspace (0, 20, 100) # Range of base volumes 

to add 

# Initialize empty arrays 

pH_values = np. zeros_like(volume_range) 

for i, volume in enumerate(volume_range): 

# Calculate total moles of acid and base 

moles_acid = acid_concentration * volume_range[i] 

moles_base = base_concentration * volume 

# Calculate moles of remaining acid and conjugate base 

moles_conjugate_base = min 

  



Python Programming for Chemist https://www.kdpublications.in 

ISBN: 978-81-968830-6-5  

13 

 

Chapter 3 

Chapter 3: Data Exploration and Analysis: Pandas 

for the Curious Chemist 

Welcome to the realm of data analysis, chemists! Equipped with 

NumPy, we now introduce a powerful ally for exploring chemical 

datasets: The Pandas library. Imagine it as a skilled data wrangler, 

adept at handling large and complex datasets with ease. 

3.1 Unveiling the DataFrame: A Chemist's Toolbox for 

Handling Data 

At the heart of Pandas lies the DataFrame, a versatile data structure 

resembling a spreadsheet with rows and columns. It excels at 

organizing and manipulating diverse chemical data, from spectra 

to kinetic measurements. 

Creating DataFrames: Pandas offers multiple ways to create 

DataFrames: 

Python 

# From a list of lists: 

data = [['H2O', 18.015], ['CH4', 16.043], ['CO2', 44.01]] 



Python Programming for Chemist 

14 

 

df = pd. DataFrame (data, columns= ['Compound', 'Molar Mass']) 

# From a CSV file: 

df = pd.read_csv('reaction_data.csv') 

3.2 Exploring the Datascape: Navigating and Understanding 

Your Data 

Before diving into analysis, it's crucial to familiarize yourself with 

your DataFrame's content and structure. 

• Viewing data: Use df. head () to glimpse the first few rows, df. 

tail () for the last few, and df.info () for a summary of data types 

and missing values. 

• Accessing columns: Select a column using df['ColumnName'] 

or dot notation df. ColumnName. 

• Filtering rows: Use conditional expressions within square 

brackets to filter data based on criteria. 

3.3 Manipulating Molecules of Data: Shaping and 

Transforming Your DataFrame 

Pandas provides tools to reshape and transform your data for 

analysis: 

• Adding and removing columns: Create new columns with 

calculations or remove unnecessary ones. 



Data Exploration and Analysis: Pandas for the Curious Chemist 

15 

 

• Sorting data: Arrange rows based on specific columns using 

df. sort_values ('ColumnName'). 

• Grouping and aggregating data: Calculate summary statistics 

for groups of data using df. groupby('Category'). mean () or 

similar methods. 

3.4 Visualizing Chemical Insights: Seaborn for Stunning Plots 

"A picture is worth a thousand spectra"—Seaborn, built on 

Matplotlib, creates visually appealing plots for data exploration: 

import seaborn as sns 

# Distribution plot: 

sns. histplot (df['Molar Mass'], kde=True) 

# Scatter plot: 

sns. scatterplot (x='Temperature', y='Reaction Rate', data=df) 

3.5 Case Study: Analyzing Reaction Kinetics Data 

Let's apply Pandas to a common chemical task: analyzing reaction 

kinetics data. Imagine a CSV file with time, concentration, and 

temperature measurements. 

 



Python Programming for Chemist 

16 

 

# Read the data into a DataFrame: 

df = pd.read_csv('kinetics_data.csv') 

# Calculate reaction rates: 

df['Reaction Rate'] = -(df['Concentration'].diff() / df['Time'].diff()) 

# Group data by temperature and calculate mean rates: 

grouped_rates = df.groupby('Temperature')['Reaction 

Rate'].mean() 

# Plot the reaction rates as a function of temperature: 

sns.lineplot(x=grouped_rates.index, y=grouped_rates.values) 

3.6 Exercises: 

1. Import a dataset of IR spectra and calculate the average 

intensity for each wavenumber. 

2. Read a CSV file of protein structures and visualize the 

distribution of amino acid lengths. 

3. Plot a correlation matrix to visualize relationships between 

different variables in a chemical dataset. 

4. Use Pandas to clean and preprocess a dataset containing 

missing values and outliers. 



Data Exploration and Analysis: Pandas for the Curious Chemist 

17 

 

5. Perform statistical analysis on chemical data, such as 

calculating means, standard deviations, and confidence 

intervals. 

3.7 Conclusion: 

Congratulations on mastering another essential tool! Pandas 

empowers you to explore, analyze, and visualize chemical data 

with ease. In subsequent chapters, we'll delve into 

cheminformatics, molecular modeling, and advanced applications, 

building upon these foundational skills. Stay tuned for more 

exciting chemical adventures with Python! 

  



Python Programming for Chemist https://www.kdpublications.in 

ISBN: 978-81-968830-6-5  

18 

 

Chapter 4 

Chapter 4: Unlocking the Molecular World: 

Cheminformatics with Python 

Welcome to the frontier of digital chemistry, where molecules 

dance on digital screens and their secrets are revealed through 

code! In this chapter, we'll delve into cheminformatics, the art of 

extracting knowledge from chemical structures using Python. 

4.1 Mastering Molecular Representations: RDKit, the Virtual 

Chemist 

Imagine a virtual laboratory where you can create, manipulate, and 

analyze molecules with ease. The RDKit library grants you this 

power, acting as your digital chemist's assistant. 

Building Molecules: RDKit offers multiple ways to construct 

molecular structures: 

# From SMILES strings: 

molecule = 

Chem.MolFromSmiles('CC(=O)OC1=CC=CC=C1C(=O)O') # 

Aspirin 

 



Unlocking the Molecular World: Cheminformatics with Python 

19 

 

# From file formats (SDF, MOL, etc.): 

suppl = Chem.SDMolSupplier('molecules.sdf') 

molecule = next(suppl) 

Visualizing Molecular Blueprints: Bring molecules to life with 

visual representations: 

# 2D depiction: 

Draw.MolToImage(molecule). show () 

# 3D structure (requires external software like RDKit's 3D viewer): 

AllChem.Compute2DCoords(molecule) 

Calculating Molecular Properties: Uncover hidden characteristics 

of molecules: 

Python 

# Molecular weight: 

mw = Descriptors.MolWt(molecule) 

# LogP (lipophilicity): 

 



Python Programming for Chemist 

20 

 

logP = Crippen.MolLogP(molecule) 

# Number of hydrogen bond donors and acceptors: 

num_hbd = Descriptors.NumHDonors(molecule) 

num_hba = Descriptors.NumHAcceptors(molecule) 

Fingerprinting Molecular Identity: Create unique "fingerprints" to 

compare and search molecules: 

# Molecular fingerprints: 

fp = AllChem.GetMorganFingerprintAsBitVect(molecule, 

radius=2) 

# Similarity search: 

tanimoto_similarity = DataStructs.TanimotoSimilarity(fp1, fp2) 

4.2 Case Study: Virtual Screening for Drug Discovery 

Cheminformatics plays a crucial role in drug discovery. Let's 

simulate a virtual screening scenario: 

Python 

# Load a library of drug-like molecules: 



Unlocking the Molecular World: Cheminformatics with Python 

21 

 

drug_library = Chem.SDMolSupplier('drug_library.sdf') 

# Define a query molecule (e.g., a known drug target): 

query_molecule = 

Chem.MolFromSmiles('CC(=O)NC1=CC=C(C=C1)N') # 

Acetanilide 

# Calculate fingerprints for both query and library molecules: 

query_fp = 

AllChem.GetMorganFingerprintAsBitVect(query_molecule, 

radius=2) 

library_fps = [AllChem.GetMorganFingerprintAsBitVect(mol, 

radius=2) for mol in drug_library] 

# Find the most similar molecules in the library: 

similar_molecules = [] 

for i, library_fp in enumerate(library_fps): 

similarity = DataStructs.TanimotoSimilarity(query_fp, 

library_fp) 

if similarity > 0.8: # Threshold for similarity 



Python Programming for Chemist 

22 

 

similar_molecules.append(drug_library[i]) 

# Visualize and analyze the potential drug candidates: 

4.3 Exercises: 

1. Read a dataset of molecules in SMILES format and calculate 

their molecular weights and logP values. 

2. Perform a substructure search to identify molecules 

containing a specific functional group (e.g., benzene ring). 

3. Generate a similarity matrix for a set of molecules and 

visualize it using a heatmap. 

4. Use RDKit to generate 3D conformers of a molecule and 

visualize them using an appropriate software. 

4.4 Conclusion: 

You've now entered the realm of cheminformatics, where 

molecules dance at your fingertips! RDKit empowers you to 

explore, analyze, and manipulate chemical structures in silico. In 

the next chapter, we'll dive deeper into molecular modeling, 

simulating the behavior of molecules in virtual worlds. Stay tuned 

for more exciting chemical adventures with Python! 

  



Python Programming for Chemist https://www.kdpublications.in 

ISBN: 978-81-968830-6-5  

23 

 

Chapter 5 

Chapter 5: Unveiling the Molecular Dance: 

Molecular Modeling with Python 

Welcome back to the laboratory of Python, where molecules no 

longer sit static on paper but come alive in simulations driven by 

code! In this chapter, we'll embark on the fascinating journey of 

molecular modeling, using Python to predict and understand the 

behavior of molecules at the atomic level. 

5.1 The Stage is Set: Choosing Your Simulation Toolbox 

Molecular modeling offers a diverse array of tools, each with its 

strengths and limitations. Let's explore some popular options: 

• Force Fields: These models represent the interactions between 

atoms and provide the "rules of the game" for simulations. 

Popular choices include MMFF94, Amber, and CHARMM. 

• Molecular Mechanics: This method calculates the energy of a 

molecule based on its atomic positions and the chosen force 

field. Minimizing the energy leads to the most stable 

conformation. 

• Molecular Dynamics: Imagine tiny molecules zipping around 

like cosmic dancers! This method simulates their movement 



Python Programming for Chemist 

24 

 

over time, offering insights into dynamic processes like 

reactions and diffusion. 

5.2 Open Babel: The Universal Translator for Molecular 

Languages 

Just like Babel in ancient mythology helped people bridge 

language barriers, the Open Babel library in Python translates 

between various molecular file formats. This allows you to 

seamlessly work with data from different sources and software. 

# Read a molecule from a PDB file: 

protein = Chem.MolFromPDBFile('my_protein.pdb') 

# Convert the molecule to a SMILES string: 

smiles = Chem.MolToSmiles(protein) 

# Write the molecule to a SDF file: 

Chem.MolToSDF(protein, 'my_molecule.sdf') 

5.3 Conformations Galore: Exploring the Shapes of Molecules 

Molecules often exist in multiple stable conformations (shapes). 

Exploring these options is crucial for understanding their 

properties and reactivity. 



Unveiling the Molecular Dance: Molecular Modeling with Python 

25 

 

Conformational Search: This process identifies different low-

energy conformations of a molecule using algorithms like Monte 

Carlo or genetic algorithms. 

# Perform a conformational search using RDKit: 

conformer_generator = Chem.MolConformerGenerator(protein) 

conformers = conformer_generator.GenerateConformers() 

Minimum Energy Conformation (MEC): This is the conformation 

with the lowest energy, often representing the most stable form. 

5.4 Docking the Puzzle Pieces: Predicting Molecular 

Interactions 

Imagine designing a drug that perfectly fits into a protein's binding 

pocket.  

Molecular docking simulates this process, predicting the binding 

orientation and affinity of a ligand (small molecule) to a target 

(protein or other macromolecule). 

# Perform docking using AutoDock Vina: 

vina_cmd = 'vina --receptor target.pdb --ligand ligand.pdb' 

os.system(vina_cmd) 



Python Programming for Chemist 

26 

 

5.5 Exercises: 

1. Use molecular mechanics to minimize the energy of a small 

molecule and visualize its optimized structure. 

2. Perform a conformational search for a flexible molecule and 

compare the energies and properties of different conformers. 

3. Dock a drug candidate to a protein target and analyze the 

predicted binding interactions. 

4. Calculate the free energy of binding for a protein-ligand 

complex using computational methods. 

5.6 Conclusion: 

Molecular modeling empowers you to step into the microscopic 

world of molecules and witness their dynamic dance. Python 

provides powerful tools like Open Babel and docking software to 

unlock the secrets of molecular interactions and predict their 

behavior. In the next chapters, we'll venture further into this 

computational universe, tackling larger systems and advanced 

applications. Stay tuned for the next leg of your Python-powered 

chemical adventures! 

  



Python Programming for Chemist https://www.kdpublications.in 

ISBN: 978-81-968830-6-5  

27 

 

Chapter 6 

Chapter 6: Conquering Complexity: Scaling Up with 

Python in Chemistry 

Welcome back, chemists! As we journey deeper into the world of 

Python-powered chemistry, we face a rising challenge: 

complexity.  

From simulating biological systems to designing materials, our 

endeavors encompass larger datasets and intricate intermolecular 

interactions.  

This chapter equips you with tools to conquer this complexity and 

scale up your Python skills for impactful research. 

6.1 Libraries of Giants: Leveraging High-Performance 

Computing (HPC) 

For complex calculations involving thousands of atoms or intricate 

reaction pathways, traditional laptops might stutter. Enter HPC, 

where clusters of powerful computers join forces to handle heavy-

duty calculations.  

Python shines here! Libraries like mpi4py and dask enable parallel 

processing, distributing your workload across multiple cores, 

nodes, or even clouds for blazing-fast computations. 



Python Programming for Chemist 

28 

 

from mpi4py import MPI 

comm = MPI.COMM_WORLD # Initialize MPI communicator 

# Divide tasks among processes 

rank = comm.Get_rank() 

# Perform calculations specific to each process 

# ... 

# Gather results and analyze (master process) 

if rank == 0: 

# ... 

6.2 Quantum Chemistry Strikes Back: Simulating Electronic 

Worlds 

Understanding a molecule's intricate electronic structure and 

predicting its properties requires venturing into the world of 

quantum mechanics. Python plays a vital role here by interfacing 

with powerful quantum chemistry software like Gaussian and Psi4. 

This allows you to calculate energies, optimize geometries, and 

analyze electronic orbitals, shedding light on molecular behavior 

at its fundamental level. 



Conquering Complexity: Scaling Up with Python in Chemistry 

29 

 

# Set up a Gaussian calculation for a molecule: 

from gaussian import g09 

options = {'basis': '6-31G', 'job': 'opt'} 

molecule = 'C=O' 

calculation = g09(molecule, options) 

calculation.run () 

# Extract and analyze results: 

energy = calculation.optimize.final_energy 

orbitals = calculation.wavefunction.molecular_orbitals 

6.3 Machine Learning Alchemists: Predicting, Discovering, 

and Designing 

Machine learning (ML) has revolutionized chemistry, 

transforming data into knowledge. Python libraries like 

TensorFlow and scikit-learn empower you to train models that 

predict properties, discover hidden patterns in large datasets, and 

even design new materials. Imagine optimizing catalysts, 

predicting reaction outcomes, or identifying promising drug 

candidates – all within the realm of Python-powered ML! 



Python Programming for Chemist 

30 

 

# Train a model to predict solubility of molecules: 

from sklearn.linear_model import LinearRegression 

data = load_molecule_data('solubility.csv') 

features = data['descriptors'] 

labels = data['solubility'] 

model = LinearRegression() 

model.fit(features, labels) 

# Predict solubility for a new molecule: 

new_features = ... 

predicted_solubility = model.predict([new_features])[0] 

6.4 Collaborating Beyond Borders: Open-Source Ecosystems 

for Sharing and Scaling 

Chemistry thrives on collaboration! Python's vibrant open-source 

community provides a wealth of libraries, tools, and frameworks 

readily available for your research. Platforms like Git and Github 

facilitate code sharing and collaborative development, enabling 

researchers across the globe to work together on groundbreaking 

projects. 



Conquering Complexity: Scaling Up with Python in Chemistry 

31 

 

6.5 Case Study: 

Optimizing Solar Cell Materials with Multiscale Modeling 

Let's explore how Python tackles a complex challenge: optimizing 

materials for solar cells. 

Use HPC to perform quantum mechanical calculations on 

candidate materials, analyzing their electronic properties. 

Train a machine learning model on a dataset of materials and their 

photovoltaic performance to predict suitable candidates. 

Develop a multiscale model combining molecular simulations with 

macroscopic device physics to analyze and optimize the full solar 

cell device. 

6.6 Exercises: 

1. Use Python to parallel-process a series of docking simulations 

for different ligands. 

2. Build a machine learning model to predict the stability of 

protein-ligand complexes. 

3. Implement a Monte Carlo simulation to study the diffusion of 

molecules in a membrane. 

4. Contribute to an open-source chemistry library by adding a 

new functionality or bug fix. 



Python Programming for Chemist 

32 

 

6.7 Conclusion: 

Congratulations! You've reached a new peak in your Python-

powered chemistry journey. Armed with powerful libraries for 

HPC, quantum chemistry, and machine learning, you can tackle 

some of the most complex challenges in our field. Remember, the 

road to scientific breakthroughs is paved with collaboration and 

curiosity. Keep exploring, keep innovating, and use the power of 

Python to push the boundaries of chemical knowledge! 

  



Python Programming for Chemist https://www.kdpublications.in 

ISBN: 978-81-968830-6-5  

33 

 

Chapter 7 

Chapter 7: Beyond the Lab: Real-World 

Applications of Python in Chemistry 

Welcome to the final frontier of our Python-powered chemistry 

journey! In this chapter, we'll venture beyond the confines of the 

digital lab and explore how Python transforms theoretical concepts 

into tangible outcomes that impact our world. Get ready to witness 

the power of code in action, from drug discovery to materials 

design, sustainability initiatives, and more! 

7.1 Virtual Drug Hunters: Accelerating the Quest for Cures 

Python plays a pivotal role in modern drug discovery, accelerating 

the process of finding new medicines for various diseases. Here's 

how it contributes: 

• High-throughput screening: Python scripts automate the 

screening of massive compound libraries against potential drug 

targets, identifying promising candidates efficiently. 

• Structure-based drug design: Python-powered molecular 

modeling and docking software help visualize and predict how 

drug molecules interact with their protein targets, guiding 

rational drug design. 



Python Programming for Chemist 

34 

 

• QSAR modeling: Quantitative structure-activity relationships 

(QSAR) built using machine learning algorithms in Python 

predict the biological activity of molecules based on their 

structural features, aiding in lead optimization. 

7.2 Materials Architects: Designing the Future with Code 

Python powers the development of innovative materials with 

tailored properties for various applications: 

• Computational materials design: Python simulations predict 

material properties, screen for optimal candidates, and guide 

synthesis pathways, reducing trial-and-error experimentation. 

• Nanomaterials design: Python-based simulations model the 

behavior of nanomaterials at the atomic level, aiding in the 

rational design of nanomaterials with specific functionalities. 

• Materials Informatics: Machine learning techniques in Python 

extract insights from materials data to predict properties, 

discover new materials, and optimize synthesis processes. 

7.3 Green Crusaders: Protecting the Planet with Python 

Python contributes to sustainable chemistry by: 

• Optimizing chemical processes: Python-based simulations 

model chemical reactions and processes, identifying conditions 



Beyond the Lab: Real-World Applications of Python in Chemistry 

35 

 

that minimize waste, energy consumption, and environmental 

impact. 

• Designing sustainable materials: Python aids in the 

development of bio-based materials, renewable energy 

materials, and catalysts for green chemistry processes. 

• Analyzing environmental data: Python tools help analyze 

pollution levels, track environmental changes, and assess the 

environmental impact of chemicals. 

7.4 Case Study: 3D Printing Personalized Medicine with 

Python 

Imagine 3D printing customized drug tablets tailored to a patient's 

unique needs.  

Python makes this possible: 

• Formulating drug combinations: Python scripts optimize drug 

formulations based on patient data and pharmacokinetic 

models. 

• Designing printable structures: Python-based software designs 

the 3D structure of the tablet, incorporating controlled-release 

mechanisms. 

• Generating printing instructions: Python scripts generate code 

for 3D printers to create the personalized tablets. 

 



Python Programming for Chemist 

36 

 

7.5 Exercises: 

1. Write a Python script to analyze a dataset of drug activity and 

identify promising lead compounds. 

2. Use Python to simulate the diffusion of a drug molecule 

through a cell membrane. 

3. Develop a Python model to predict the degradation rate of a 

biodegradable polymer. 

4. Use Python to analyze a dataset of air quality measurements 

and identify trends in pollution levels. 

7.6 Conclusion: 

Your journey with Python in chemistry doesn't end here! Python's 

versatility and vibrant community continue to expand its reach, 

inspiring new applications and discoveries every day. Embrace its 

power to explore, innovate, and make a tangible impact on the 

world around you. Remember, the only limit is your imagination 

and the code you create! Keep experimenting, keep learning, and 

keep pushing the boundaries of what's possible with Python in 

chemistry. 

  



Python Programming for Chemist https://www.kdpublications.in 

ISBN: 978-81-968830-6-5  

37 

 

Chapter 8 

Chapter 8: Gazing into the Crystal Ball: Future 

Directions, Challenges, and Opportunities for 

Python in Chemistry 

Welcome back, intrepid chemists! As we conclude our journey 

through the wonderland of Python-powered chemistry, let's turn 

our gaze not just inwards but outwards.  

This chapter delves into the exciting vistas of the future, exploring 

the potential directions, challenges, and opportunities that await us 

at the intersection of code and chemistry. 

8.1 Artificial Intelligence: The Rise of the Chemical Brain 

Imagine a world where AI algorithms not only analyze data but 

also generate new knowledge, design experiments, and propose 

innovative chemical solutions. This vision isn't science fiction; it's 

the driving force behind the burgeoning field of AI for chemistry. 

Python, as a versatile and accessible language, plays a crucial role 

in this revolution. 

• Machine Learning on Steroids: Expect deep learning 

algorithms to go beyond predicting properties and 

reactions. They'll design novel molecules, optimize 



Python Programming for Chemist 

38 

 

processes, and even control intricate reaction pathways in real-

time. Imagine an AI assistant that suggests the next step in a 

multi-step synthesis or discovers a revolutionary catalyst based 

on its vast chemical knowledge. 

• Automating the Scientific Process: Tedious tasks like data 

analysis, literature review, and experiment design will be 

streamlined with AI-powered tools. Imagine software that 

reads scientific papers, identifies promising research 

directions, and generates hypotheses for you to test. Python 

will be the bridge between these algorithms and the chemical 

research workflow. 

8.2 Quantum Computing: Unlocking the Secrets of the 

Universe 

While classical computers struggle with the complexities of 

quantum systems, quantum computers hold the key to unlocking 

the secrets of the microscopic world. Python, playing its 

interfacing role, will connect these powerful machines to the world 

of chemical simulations. 

• Precisely Predicting Reactions: Imagine simulating intricate 

chemical reactions with atomic-level detail, accounting for 

electron correlation and quantum effects. This will 

revolutionize fields like catalysis, materials science, and drug 

discovery. Python will be the language to translate our 



Gazing into the Crystal Ball: Future Directions, Challenges… 

39 

 

chemical questions into instructions for the quantum computer 

and interpret its outputs. 

• Designing Beyond Imagination: We'll move beyond existing 

molecules and materials, designing entirely new ones with 

tailor-made properties by harnessing the power of quantum 

simulation. Python will help us navigate this uncharted 

territory and translate quantum insights into tangible chemical 

creations. 

8.3 Ethical Considerations: Navigating the Moral Maze 

With great power comes great responsibility.  

As we delve deeper into AI and quantum chemistry, crucial ethical 

questions arise: 

• Bias and Fairness: Machine learning algorithms can 

perpetuate biases present in the data they're trained on. We 

must ensure responsible data management and develop 

algorithms that are fair and unbiased, representing the diversity 

of the chemical world. 

• Transparency and Explainability: Complex AI models can be 

opaque, making it difficult to understand their reasoning and 

trust their predictions. We need transparent and explainable 

models that chemists can understand and interpret, ensuring 

responsible scientific practice. 



Python Programming for Chemist 

40 

 

• Accessibility and Openness: Access to cutting-edge tools like 

quantum computers should be democratized, not remain 

confined to elite research groups. Open-source code and 

educational resources will be crucial for fostering collaboration 

and inclusivity in the future of chemical computation. 

8.4 Conclusion: A Canvas of Endless Possibilities 

The future of Python in chemistry is brimming with possibilities. 

AI will become our collaborator, quantum computers our 

microscopes, and ethical considerations our guideposts as we 

explore the uncharted territories of chemical knowledge. 

Remember, the real magic lies not just in the code but in the minds 

of the chemists who wield it. So, keep learning, keep innovating, 

and keep pushing the boundaries of what's possible. The future of 

chemistry, powered by Python, awaits your creativity and your 

thirst for discovery. 



Python Programming for Chemist https://www.kdpublications.in 

ISBN: 978-81-968830-6-5  

41 

 

Glossary of Relevant Chemical and Programming Terms: 

Atom: The basic unit of matter, consisting of a nucleus surrounded 

by electrons. 

Molecule: A group of atoms bonded together by chemical forces. 

Functional group: A specific arrangement of atoms within a 

molecule responsible for its reactivity and chemical properties. 

Reaction: A process in which chemical bonds are broken and 

formed, resulting in new products. 

Spectroscopy: A technique that measures the interaction of light 

with matter to determine its properties. 

Kinetics: The study of the rate and mechanism of chemical 

reactions. 

Equilibrium: A state in which the rate of a forward reaction equals 

the rate of the reverse reaction. 

Thermodynamics: The study of the relationship between 

heat, work, and temperature. 

Python: A high-level, general-purpose programming language. 

 



Python Programming for Chemist 

42 

 

Numpy: A Python library for efficient numerical calculations. 

Pandas: A Python library for data analysis and manipulation. 

RDKit: A Python library for cheminformatics and molecular 

modeling. 

Open Babel: A Python library for converting between different 

molecular file formats. 

Docking: A computational method for predicting how a molecule 

binds to another molecule. 

Machine learning: A field of computer science that allows 

computers to learn from data without being explicitly 

programmed. 

HPC: High-performance computing, using clusters of computers 

to perform complex calculations. 

Quantum chemistry: The study of the behavior of atoms and 

molecules using the principles of quantum mechanics. 

  



Python Programming for Chemist https://www.kdpublications.in 

ISBN: 978-81-968830-6-5  

43 

 

Recommended Resources for Further Learning and 

Exploration: 

Books: 

• "Python for Scientists and Engineers" by Hans Petter 

Langtangen 

• "Computational Chemistry" by Donald A. McQuarrie and 

Simon Stucky 

• "Machine Learning for Chemists" by Luigi Monge and 

Franco A. Evangelista 

Online Courses: 

• edX: "Introduction to Cheminformatics" 

• Coursera: "Computational Chemistry: Methods and 

Applications" 

• Udacity: "Intro to Python for Data Science" 

Websites: 

• The Python Software 

Foundation: https://www.python.org/ 

• RDKit: https://www.rdkit.org/ 

• Open Babel: http://openbabel.org/ 

• Journal of Chemical Information and 

Modeling: https://pubs.acs.org/journal/jcisd8 

https://www.python.org/
https://www.rdkit.org/
http://openbabel.org/
https://pubs.acs.org/journal/jcisd8


Python Programming for Chemist 

44 

 

Blogs and Tutorials: 

• "Chemical informatics and cheminformatics 

blog": https://blueobelisk.github.io/ 

• "Python for Scientists":   

https://jakevdp.github.io/PythonDataScienceHandbook/ 

• "DataCamp": https://www.datacamp.com/ 

 

https://blueobelisk.github.io/
https://jakevdp.github.io/PythonDataScienceHandbook/
https://www.datacamp.com/


 

 

 
 


