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Abstract: 

Entomopathogenic nematodes (EPNs) have been identified as one of the most efficient 
biocontrol agents for insects that are damaging to many agricultural crops. Steinernema 

and Heterorabditis are the two most common EPNs genera. EPNs are an environmentally 

beneficial crop protection technology. EPNs use with mutualistic bacteria to kill insects, 
and they are readily mass manufactured. Methods of mass production of EPNs are in vivo 

and in vitro (solid or liquid fermentation). In vivo production is also suitable for niche 

markets and small-scale producers with a limited budget. Commercially in vivo 
manufacturing is used when market potential is limited/undeveloped or industrial 

production utilizing in-vitro technologies is not feasible or cost-effective. Currently, 

whenever expertise as well as starting funds are available, the in vitro approach is an 

economically viable technology. Currently, whenever expertise as well as starting funds are 
available, the in vitro approach is an economically viable technology. This chapter covers 

the biology, their bacterial symbionts and mass manufacturing of EPNs using in vivo and 

in vitro approaches. 
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11.1 Introduction: 

Nematodes are a diverse collection of creatures that make up the phylum Nematoda and are 

also referred to as roundworms (Kiontke, 2013). Nematodes normally have a filiform, 

transparent body without segments and are bilaterally symmetrical, while certain plant-
parasitic nematode females (such cyst and root-knot females) develop a globose 

morphology. They are the animal kingdom's most inclusive phylum because of their ability 

to adapt to living in a wide variety of environments. Nematodes are live in both free-living 

and parasitic forms of organisms such as animals and plants (Iqbal, 2016). Biopesticides are 
made from organic substances including plants, microbes, animals, and some minerals. 
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EPNs, which parasitize insects, have been explained from 23 nematode families 
(Koppenhofer, 2007). EPNs are parasitic microorganisms that parasitize, infect, and kill 

insects. Despite the fact that the group of EPNs is now being expanded to 

comprise othernematodes like as some species of the genus Oscheius (Dillman et al. 2012). 
Biopesticides have the potential to be efficient substitutes for chemical pesticides (Karthi et 

al., 2019). Developing nations have a significant opportunity to develop and marketing 

of biopesticides which reducing their dependency on chemical pesticides that are 

conventional (Senthil-Nathan, 2015).  Entomopathogenic nematodes are biocontrol 
organisms that have the potential to infect and kill soil-dwelling and above-ground pests 

such as insects (Kaya and Gaugler, 1993; Laznik et al., 2010). EPNs pose no harm to human 

or animal health and are extremely specific (Boemare, Laumond, & Mauleon, 1996). 

These nematodes are from the families Steinernematidae and Heterorhabditidae.The famil
y Heterorhabditidae includes the genus Heterorhabditis, which has 19 species (Nguyen, 2

017) and Steinernematidae family contains the genera Neosteinernema (one documented 

species) and Steinernema (84 identified species) (Nguyen, 2017a). Entomopathogenic 

nematodes of the genera Steinernema and Heterorhabdztis (Nematoda: Rhabdltlda) have 
emerged as effective biological control agents for insects. These Entomopathogenic 

nematodes are symbiotically connected to bacteria of the genus Photorhabdus and 

Xenorhabdus which belong to Enterobacteriaceae (Grewal, 2002). These 
Entomopathogenic nematodes enter the host insect body by the mouth, anus, spiracles, or 

integument, and then release their symbiont into the insect haemolymph, where the bacteria 

multiply. Infectious juveniles who have had developmental arrested recover to complete 
their growth cycle. The bacteria secrete poisons and antimicrobial substances that cause the 

insect host to die within 48 hours while creating favourable conditions for nematode growth 

and reproduction.  

The nematodes eat the multiplying bacteria and the decaying insect carcass. These EPN 

grow, mate, and lay eggs there. A new generation of infective juvenile is subsequently 
produced, and when the host's supply of nutrients runs out, they go to look for fresh 

insect prey. Improved mass-produced research has also advanced (Shapiro-Ilan et al., 

2012b). Currently, Entomopathogenic nematodes are produced in vivo or in vitro (solid and 

liquid culture) (Friedman, 1990; Ehlers and Shapiro-Ilan, 2005; Shapiro-Ilan et al., 2012b). 

11.2 Biology and Life Cycle Entomopathogenic Nematodes: 

EPNs life stages are divided into the following phases: eggs, juvenile, and adult (Fig. 1). 

The infective juvenile (IJ) or dauer stage is a free-living, parasitic third juvenile stage that 

enters the host by natural openings such as the mouth, anus, spiracles, or infrequently 
through the insect cuticle (Shapiro-Ilan et al., 2014). The nematode's symbiotic bacteria are 

discharged after entering the host's hemocoel. Using an anterior tooth, several 

Heterorhabditid species get entry through inter-segmental membranes of insect cuticles. 
These bacteria proliferate quickly in nutrient-rich insect hemolymph and secrete toxins that 

cause septicemia disease, causing the host to die within 24 - 48 hours (Bedding and 

Molyneux, 1982). The carcass is digested by the bacteria and becomes food for the EPNs. 

Furthermore, the antibiotics and other toxic compounds they release and protect the host 
carcass from other microorganisms (Strong et al., 1996). Once within the insect, IJs moult 
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and the nematodes reproduce in 1-3 generations, whereas Entomopathogenic nematode 
bacteria multiply by mass production (Lewis and Clarke, 2012). When nutrients are 

exhausted, new IJs develop and escape from the insect carcass in search of new 

susceptible prey in the environment. 

 

Figure 11.1: Lifecycle of Entomopathogenic Nematodes 

11.3 Mass Production Techniques of Entomopathogenic Nematodes: 

The manufacturing of EPNs on a wide scale at a competitive price within a short period of 

time is the primary condition for their effective and economically sensible use in crop 
protection (Ehlers, 2001). Nematodes that are entomopathogenic to insects may be easily 

cultivated in the lab using in vivo and in vitro techniques. These nematodes were initially 

cultivated more than 70 years ago and are now commercially produced utilising by in vivo 

and in vitro (solid and liquid culture) techniques. In the in vivo approach, an insect serve as 

a bioreactor, whereas in the in vitro approach, artificial medium is employed. 

11.3.1 In-Vivo Culturing Entomopathogenic Nematode (Epns): 

For in vivo mass rearing of EPNs, the White trap technique—which White invented in 1927 

and later improved and rebuilt—is employed (Dutky et al., 1964). The Baermann gadget 

was initially used to extract IJs from cultures. Based on the characteristics of parasite 
nematodes migrating in the third larval stage, a novel technique and apparatus for extracting 

parasitic nematodes from the charcoal faecal mixture sample were developed (White, 1927). 

He created a trap for migratory IJs that contained water in a big Petri plate or tray, a dead 
larvae resting on it, and a Petri plate. This trap was made by the inventor using plates with 

a diameter of 125–150 mm, test tubes with a size of 20–150 mm, filter sheets 9–12 cm in 

diameter, a bladed spatula, a test tube rack, a boiler with a lid, animal charcoal, and sterile 
water. In the watch glasses, he first combines the charcoal and the waste before transferring 

it to the half-Petri plate with the wetted filter paper wrapped at the bottom. The culture is 

put in the half Petri dish after adding sterile water to the crystallising dish to fill the bottom. 
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In the water of the Petri plates, the migratory IJs from the culture were trapped. The half 
Petri plates containing the charcoal culture are taken out with forceps once the watch-glass 

cover has been removed. Test tubes are filled with the IJ-containing water that has been 

removed from the crystallising plates. Gravity causes the IJs to fall to the bottom, and once 
the supernatant is pipetted away, the IJs concentration is what remains. The culture was 

cultured at room temperature with a high humidity level after he used steam to disinfect the 

apparatus. This method, which had the advantage of collecting worms entirely in their 

infectious phases with little contamination, allowed him to isolate eight different species of 
nematodes from four genera. This strategy has been altered and rewritten about by other 

scholars (Poinar, 1979; Woodering and Kaya, 1988; Kaya and Gaugler, 1993; Lindegren et 

al., 1993; Abdel- Razek and Abd-Elgawad, 2007). All strategies are used to track and gather 
IJs that naturally depart from the infected body, producing high-quality EPN. Some 

researchers have described the process of generating EPNs in the bigger wax moth (Galleria 

mellonella L.) and the yellow mealworm (Tenebrio molitor L.) (Shapiro-Ilan et al., 2002b; 

Shapiro-Ilan and Gaugler, 2002a). 

 

Figure 11.2: A Schematic Flow Chart Of The In Vivo Mass Production Technique 

For Epns Source: Holmes Et Al. (2015) 
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For laboratory and small-scale field testing, EPNs have been more heavily mass multiplied 
in vivo. Commercial in vivo manufacture is employed when there is a small or 

underdeveloped market or when using in-vitro technology for industrial production is not 

technically or financially possible (Ehlers and Shapiro Ilan, 2005a). Figure 2 shows a 
schematic flow diagram of the in vivo manufacturing method. Another schematic EPN 

production process employing an in vivo technique is shown in Figure 3 in a small unit. 

 

Figure 3: A Systemic Diagram of Epns Production Through In-Vivo Technology in A 

Mini Unit 

11.3.2 In-Vitro Culturing Entomopathogenic Nematode (Epns): 

A. Solid Culture Method: EPNs were initially produced in vitro using an axenic process 

on a solid media (Glaser 1932). After then, it was discovered that the presence of bacteria 

facilitated growth. Chicken offal or another protein-rich media were soaked in an inert 
carrier (sponge, polyurethane) by Bedding to create the first successful commercial scale 

monogenic culture, also known as a solid culture (Bedding, 1984). This method involves 

growing nematodes on a crumbed polyether polyurethane sponge that has been infused with 
symbiotic bacteria, emulsified beef fat, and pig's kidney. Between 66105 and 106105 IJs/g 

of material were produced using this method (Bedding 1984). Today, it is widely regarded 

as the foundation of nematode in vitro cultivation that monoxenicity be present (Poinar and 

Thomas 1966). In vitro solid culture greatly improved with the discovery of a three-
dimensional rearing technique incorporating nematode culture on crumb polyether 

polyurethane foam (Bedding 1981). Foam and a liquid media are mixed before being 

autoclaved. First, nematodes are injected, then three days later, bacteria. Nematodes can be 
collected in 2 to 5 weeks by pouring the foam through water-soaked sieves. The product is 



Recent advances in Plant Nematology 

112 

 

cleaned by repeated water washings, also known as sedimentation and decanting, as IJs 
migrate out of the foam, settle downhill, and then are pumped to a collecting tank. Similarly, 

to Petri dishes, the medium for this technique was initially based on animal products but 

was later adjusted for cost and uniformity. It can include a range of ingredients, including 
peptone, yeast extract, eggs, soy flour, and lard. The nematode can be introduced after the 

bacteria a few days later. The two species might potentially be injected simultaneously if a 

high quantity of bacteria is used.  Several efforts were taken to increase the possibility for 

scale-up production, including employing bags with a gas permeable Tyvac strip for 

ventilation, automated mixing and autoclaving, and harvesting using centrifugal sifters. 

B. Liquid Culture Method: The first liquid media for Steinernema glaseri axenic growth 

was created by the Glaser group (Glaser 1940) and was based on kidney extract. After then, 

the EPN was chemically created in liquid culture (Stoll 1952). On a shaker, he cultured the 
colonies in a liquid medium that contained raw liver extract. Axenic nematodes, on the other 

hand, were unable to be used for biocontrol because of low yields, expensive media, and—

most importantly—a lack of symbiotic bacteria in the culture (Ehlers et al. 1997). In solid 

cultures, bedding (1984) showed that even mild movement (shear effect) decreased 
nematode development. Liquid culture components include soy flour, milk powder, yeast 

extract, maize oil, casein peptone, thistle oil, egg yolk, liver extract, and cholesterol 

(Friedman et al. 1989). Culture periods can vary according on medium and species, may be 
as long as three weeks Culture times can range from one day to three weeks depending on 

the medium and species, however many species reach their peak production in two weeks 

or less. When the culture is finished, nematodes can be extracted from the media by 
centrifugation. Lipid metabolism is receiving more attention than other dietary components 

since it generates 60% of the total energy for the non-feeding IJs (Hatab and Gaugler 1997). 

Furthermore, it has been demonstrated that yields from lipid sources with high saturated 

fatty acid contents are subpar (Hatab and Gaugler 2001). Wherever knowledge and startup 
capital are available, the in vitro liquid culture approach is currently a commercially viable 

technology. This technique has been implemented by companies including Microbio, USA, 

E-Nema GmbH, Germany, and SDS Biotech (Ehlers 2001; Gaugler and Han 2002; Maurya 

et al., 2023). 

Table 11.1: Some EPNs using for management of target pests 

Target Pests Entomopathogenic 

nematodes Common name Scientific Name 

Peach fruit moth Carposina lipogenesis Sc 

Cotton bollworm Helicoverpa armigera Hi, Sg 

Rice gall midge Orseolia oryzae Hi 

Corn rootworm Diabrotica spp. Hb, Sf 

Corn earworm Helicoverpa zea Sc, Sf, Sr 

Diamondback moth Plutella xyostella Sc, Hi 

Cabbage maggot Delia radicum Sf 

Red hairy caterpillar Amsacta albistriga Sc, Hb, Hi 

Potato tuber moth Phthorimaea operculella Sb, Hi 

Leaf miner Liriomyza spp. Sf, Sc 

Turnip cutworm Agrotis segetum Sc, Sf 
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Target Pests Entomopathogenic 

nematodes Common name Scientific Name 

Stem borer Chilo suppressalis Sc, Sg, Hb 

Cat flea Ctenocephalides felis Sc, Hb 

Tomato pinworm Tuta absoluta Sf, Sc, Hb 

Borers Synanthedon spp. Sc, Hb, Sf 

References: Gitanjali, 2018 

Note abbreviation: H. sp.-Heterorhabditis species, Hb-H. bacteriophora, Hi-H. indica 

S. sp.-Steinernema species, Sb-S. brazilense, Sc-S. carpocapsae, 

Sf-S. feltiae, Sg-S. glaseri, Sr-S. riobrave, 

11.4 Conclusion: 

Entomopathogenic nematodes have emerged as an important biocontrol tool against various 
kinds of agricultural pests. Growing interest in synthetic pesticide alternatives and organic 

agriculture creates prospects for Entomopathogenic nematodes, but they must be enhanced 

in terms of efficacy, cost reduction, and simplicity of application. Commercially, 
Entomopathogenic nematodes and their mutualistic bacteria are used as safe alternatives to 

chemical pesticides. Entomopathogenic nematode production technique, both in vivo and 

invitro, has enabled these organisms to become major biopesticides. In vitro liquid 

production is the most cost-effective method and is expected to continue to dominate the 
total amount of Entomopathogenic nematodes produced globally. On the other hand, 

although in-vivo manufacturing is the least cost-effective method, it will likely continue to 

be acceptable for some niche markets or small or startup companies; advances to in vivo 
production may boost cost efficiency. EPNs will continue to assist reduce agricultural 

dependency on chemical inputs and improve sustainability. We concluded that 

Entomopathogenic nematodes and their applications play an important role for pest 

management. 
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