
 

 

 



 

 

 

 

 

BASICS OF  

PYTHON PROGRAMMING 

 

Dr. K. B. Ramesh 
Associate Professor, 

EIE Dept., 

RVCE, Bengaluru. 
 

 

 

 

 

 

 

 

 

 

Kripa-Drishti Publications, Pune. 



 

 

Book Title:  Basics of Python Programming 
Author By:  Dr. K. B. Ramesh 

 

 

 
 

ISBN: 978-81-19149-45-2 

 
Published: Jan 2024 
 

 

 

 

 

 
Publisher: 

 

Kripa-Drishti Publications 

A/ 503, Poorva Height, SNO 148/1A/1/1A,  
Sus Road, Pashan- 411021, Pune,  
Maharashtra, India. 
Mob: +91-8007068686 
Email: editor@kdpublications.in 
Web: https://www.kdpublications.in 

 

Copyright Dr. K. B. Ramesh 

All Rights Reserved. No part of this publication can be stored in any retrieval system or 
reproduced in any form or by any means without the prior written permission of the 
publisher. Any person who does any unauthorized act about this publication may be liable 
to criminal prosecution and civil claims for damages. [The responsibility for the facts 
stated, conclusions reached, etc., is entirely that of the author. The publisher is not 
responsible for them, whatsoever.] 

mailto:editor@kdpublications.in
https://www.kdpublications.in/


 

 

PREFACE 

Python Programming is one of the vital programming languages 

for engineering students. This book will introduce you to the 

Python programming language in a simple manner. It’s aimed at 

beginning programmers, but even if you’ve written programs 

before and just want to add Python to your list of languages, Basics 

of Python Programming will get you started. This book attempts 

to provide a simple explanation about the concepts of Python 

programming language with brief theory and a greater number of 

examples to illustrate the theoretical concepts. The contents 

presented in the book are very crisp and concise so that students 

are able to understand the concepts quickly. This book is for 

anybody interested in learning what seems to be emerging as the 

world’s most popular computing language, whether or not you 

have learned any programming before. This book is structured into 

the following chapters. 

Chapter 1: Introduction, Literals, Variables and Operators 

Chapter 2: Control Structures 

Chapter 3: Functions, Files and Object-Oriented Programming 

I have made a sincere and honest effort to transform my 

handwritten notes into book form. 

 

K. B. RAMESH

https://www.oreilly.com/library/view/introducing-python/9781449361167/ch01.html#intro
https://www.oreilly.com/library/view/introducing-python/9781449361167/ch01.html#intro


 

 

 

 

INDEX 

Chapter 1: Introduction, Literals, Variables and Operators .......... 1 

Chapter 2: Control Structures ................................................... 19 

Chapter 3: Functions, Files and Object Oriented Programming .. 33 

 

 





Basics of Python Programming https://www.kdpublications.in 

ISBN: 978-81-19149-45-2  

1 

 

Chapter 1 

Chapter 1: Introduction, Literals, Variables and 

Operators 

Guido Van Rossum (Born 31st January 1951) is a Dutch programmer 

best known as the author of the Python programming language. 

• Van Rossum thought he needed a name that was unique, and slightly 

mysterious, so he decided to call the language. 

• So he decided to call the language Python. 

• The name comes from Rossum’s favourite television show, ‘Monty 

Python’s Flying Circus’, which was first released in 1991. 

• The developer is Python software development. 

• Python is an interpreter, object-oriented programming high-level 

language for general-purpose programming. 

Computer Programming for Everybody: 

In 1999, Van Rosum submitted a funding proposal to DARPA called 
“Computer Programming for Everybody” in which he defined his 

goals for Python. 

a. An easy and intuitive language just as powerful as major 

competitors. 
b. Open source, so anyone can contribute to its development. 

c. Code that is as understandable as Simple English. 

d. Suitability for every task, allowing for short development times. 

Python Overview: 

• Scripting language. 

• Object-oriented. 

• Portable. 

• Powerful. 

• Easy to learn and use. 



Basics of Python Programming 

2 

 

• Includes the best features of Java, Pearl, etc. 

Advantages of Python: 

• System utilities. 

• GUIs. 

• Internet scripting. 

• Embedded scripting. 

• Database programming. 

• Artificial intelligence. 

• Image processing. 

Note Summary: 

• Simple: Allows programmers to concentrate on the solution to the 

problem rather than the language itself. 

• Platform-Independent: Python is an open-source project, 
supported by many individuals. It is a platform-independent, 

scripted language. 

• Easy to learn. 

• Versatile: Python supports development of a wide range of 

applications. 

• Portable: The programs work on any of the operating systems. 

• Object-oriented and procedure-oriented techniques. 

• Interpreted: Python is processed at run-time by the interpreter. So, 
there is no need to compile a program before executing it, we can 

simply run the program. 

• Dynamic: Python executes dynamically. 

• Embeddable: Programmers can embed Python within their C, C++, 

CORBA and Java programs to give ‘scripting’ capabilities for users. 

• Extensive libraries: Python has a huge library that is easily portable 
across different platforms. 

• Easy maintenance: Code written in Python is easy to maintain. 

Writing and Executing Python Program: 

• Download Python from www.python.org 



Introduction, Literals, Variables and Operators 

3 

 

• Python programming versions. 
a. Python 1: 1.0, 1.5, 1.5 

b. Python 2: 2.0, 2.1, 2.2 

c. Python 3: 3.0, 3.1, 3.2 

Note: 

Python 2 is legacy, Python 3 is the future.  

They have different libraries. 

• Install IDLE [Integrated Development and Learning 

Environment] 

Comparing Python with C++ Programmes: 

A. #include < iostream.h >  

voids main () 

{            C + + program 

printf (“Hello, World!”); 

} 

B. #include <stdio.h> → pre-processor command  

voids main () 

{            C program 

printf (“Hello, World!”); 

} 

C. Print (“Hello World”) 



Basics of Python Programming 

4 

 

D.  x = int (input ("Enter the value of x / n")) 

y = int (input ("Enter the value of y / n")) 

print (“x + y =”, x + y)  

print (“\n x - y =”, x - y)  

print (“\n x + y =”, x * y)  

print (“\n”) 

For ‘i' in range (1, 10):  

print (i) 

• The range () function defaults to 0 as a starting value. 

However, it is possible to specify the starting value by adding a 

parameter. 

a. Range (2, 6) which means values from 2 to 6 (but not including 6). 
b. Range (6) is not the values of 0 to 6, but the values 0 to 5. 

 

• Data and Expressions 

Literals, Variables, Operations, Data types 

• Literal: a value that is expressed as itself. 

• Example: The number 25. The string “Hello world”  Literals. 

• Variable: Its value can change during the execution of the program. 

• Constant: A constant retains the same value throughout the 

program. 

NOTE: A literal is a notation for representing a fixed value.  

A variable is a storage location associated with a symbolic name. 



Introduction, Literals, Variables and Operators 

5 

 

Examples: 1, 1.5, ‘a’, “abc” → Literals 

Variables → x = → Literals 

x = 2 + 3 → 2 and 3 are literals  

2 + 3 → is an expression 

x → is variable 

Problem: 

What is the difference between variable, constant and literal? 

• Variables: Name of the locations 

Example: int i = 10; variable 

• Constants: Same as variables but the only difference is that once the 

value is assigned to the constant, its value can’t be changed. 
Example: const int i = 10  constant 

• Literals: are values assigned to variables and constants. 

NOTE: Constant are like a variable 

• Constants and variables are both tools for storing data in 

memory. In most languages, we need to mention the type of data 

we wish to store, but in Python, this is done automatically 

• Operators: Operators are special symbols in Python that carry out 

arithmetic and/or logical computation. 

Assigning Value to a Variable in Python: 

A. website = “Apple.com”  

print (website)             o/p: Apple.com 

 



Basics of Python Programming 

6 

 

B. website = “Apple.com”  

website = “programing.com”   o/p: programing.com  

print (website) 

C. Assigning multiple values to multiple variables 

a, b, c = 5, 3.2, “Hello”           

 

D. Assigning the same value to multiple variables 

x = y = z = “same”  

print (x) 

print (y)  

print (z) 

E. Valid Program 

x = 10 print (x) a=b= c=d = “I.T Dept” 
 = 21.54 print (y) print (a, b, c, d) 

z = “Hello python” print (z)  

w = “Hello” print (w)  
Print (x, y, z, w) a = b = c = d = 100   

 Print (a, b, c, d)  

  

P5. Py P6. Py 
PI = 3.14 PI = 3.14 

 PI = 2.00            o/p: 3.14 

 Print (P5.PI) 

print (a)                                 o/p: 5 
print (b)   3.2 

print (c)       Hello 



Introduction, Literals, Variables and Operators 

7 

 

NOTE:  

• In reality, we don’t use constants in Python. 
• Use capital letters to declare a constant. 

Literals: 

• Numeric literals: Binary, octal, decimal, hexa decimal, float, 

complex 

• String literals 

• Boolean literals 

• Special literals: 'None' literal 

• Literal collection: List, Tuple, Dict and set literals 

String Literals: 

• A string literal is a sequence of characters surrounded by quotes. 
• We can use both single, double and triple quotes for a string. 

a. Boolean literals: A boolean literal can have any of the two values: 

true or false. In Python, true represents the value as 1 and false 

as 0. 

 

x = (1 = = true) b = false + 10 

y = (0 = = false) print (x, y, a, b)     o/p: true true, 5 10 

a = true + 4  

Program: 

a = 10 

b = 20 

print (a + b) → o/p: 30  



Basics of Python Programming 

8 

 

a = “10” 

b = “20” 

Print (a + b) → o/p: 1020 

Program: 

x = int (input ("Enter the value of x / n)) 

sum = 0 

for i in range (x + 1): Sum = sum + I 

print (sum) 

for i in range (6): 

print (i) 

y = [1, 2, 3, 4, 5, 6, 7] 

for i in y: 

print (i) 

y = [1, 2, 3, 4, 5, 6, 7, 

“Ramesh”] 

if i == 8: print (i) 

break 

print (i) 

else: 

print (“Finally finished”) 

print (“The operation is 
over”) 

Factorial of Number: 

x = int (input ("Enter the number \ n")) 

factorial = 1 

for i in range (1, x + 1)  

factorial = factorial * i  



Introduction, Literals, Variables and Operators 

9 

 

print (factorial) 

Python Operators: 

Special symbol that carries out computation.  

Example: 2 + 3 

2, 3 → Operands 

+ → Operator 

• Arithmetic operators 

• Comparison operators or Relational operators 

• Assignment operators 

• Logical operators or Bitwise operators 

• Membership operators 

• Identity operators 

• Operator precedence 

Arithmetic Operators: 

Perform various arithmetic operations like addition, subtraction, 

multiplication, division, % modulus, exponent, etc. 

Note: x%y → Remainder of x and y 

Floor division: x//y → Division that results in the number adjusted to the 

left in the number line. 

Exponent: x * * y → Left operand raised to the power of right [x to the 

power y] 

Program 

x = int (input (“enter the value of x\n”))  

y = int (input (“enter the value of y\n”))  



Basics of Python Programming 

10 

 

print (“x + y”, x + y) # Addition 

print (“x - y”, x - y) # Subtraction 

print (“x * y”, x * y) # Multiplication  

print (“x/y”, x/y) # Division 

print (“x //y = “, x // y) # Floor division  

print (“x % y = “, x % y) # Modulus  

print (“x ** y”, x ** y) 

print (“All operations executed successfully”) 

Comparison Operators: 

Comparison operators are used to compare values. It either returns true 

or false according to the condition. 

Example:        >, <, = =, ! =, >=, < = 

Example:         print (x < y) 

print (x > y)  

print (x = = y)  

print (x < = y)  

print (x > = y)  

print (x! = y) 

Example:         x = int (input (“enter the value of x/n”)  

y = int (input (“enter the value of y/n”)  



Introduction, Literals, Variables and Operators 

11 

 

if x = = y; 

print (x = = y)  

else 

print (x! = y) 

Logical Operators: 

They include, AND, OR and NOT operators 

Example: x and y → True if both the operands are true  

x or y → True if either of the operands is true  

not x → Complements the operand 

• The logical operators are used to compare Boolean expressions. 

• The result of the Boolean expression is always a Boolean that is true 
or false. 

• The logical operators are logical AND (&&), logical OR (||) and 

logical NOT(!) 

x = int (input (“enter the value of x/n”)) 

y = int (input (“enter the value of y/n”)) 

if x = = y; 

print (“x is equal to y”) 

else if x < y 

print (“x is less than y”) 

# else if x > y 



Basics of Python Programming 

12 

 

print (“x is greater than y”) 

# else: print (“x is greater than y”) 

print (“The operation is over”) 

x = int (input (“enter the value of x/n”) 

y = int (input (“enter the value of y/n”) 

if x = = y; print (“x is equal to y”), 

print (x = = y)  

else print (“x is not equal to y”) 

if x < = y: print (“x is less than or equal to y) 

else: print (“x is not less than or equal to y”) 

if x > = y’ print (“x is greater than equal to y”) 

else: print (“x is not greater than or equal to y”) 

if x < y: print (“x is not less than y”) 

if x > y: print (“x is greater than y”) 

else: print (“x is not greater than y”) 

if x! = y: print (“x is not equal to y”) 

else: print (“x is equal to y”) 

print (“The operations is over”) 

 



Introduction, Literals, Variables and Operators 

13 

 

Sample Program: 

1. x = 10 

y = 20 

if (x < y and x = = 10); print 

(“true”) 

print (“OK”) 

Output  

True  

OK 

2. x = 10 

y = 20 

if (x < y and x! = 10); print 

(“True”) 

print (“OK”) 

Output 

OK 

3. x = 10 

y = 20 

if (x > y or x = = 10); print 

(“True”) 

print (“OK”) 

Output  

True  

OK 

4. x = 10 

y = 20 

if (x > y or x! = 10); print 

(“False”)  

print (“OK”) 

Output 

OK 

5. x = 10 

y = 20 

if (x > y or y = = 20);  

6. x = 10 

y = 20 

if (not (x > y)); 



Basics of Python Programming 

14 

 

print (“True”) 

print (“OK”) 

Output 

True 

OK 

print (“True”) 

print (“OK”) 

Output 

True 

OK 

7. x = 10 

y = 20 

if (not (x = = 10)); 

print (“True”) 

print (“OK”) 

Output 

OK 

 

 

 

 

 

 

 

8.  x = 10 

y = 20 

print (x < y and x = = 10) 

print (x < y and x! = 10) 

print (x < y or x = = 10) 

print (x! = 10 or y! = 20) 

print (not (x > y)) 

print (not (x < y)) → False 

Output 

True 

False 

True 

True 

False 

True 



Introduction, Literals, Variables and Operators 

15 

 

Assignment Operators: 

=, += (add and assign operator),  =, *=, /=, %=, **= 

x = 10; 

x+ = 10; x = x + 10 

x − = 10; x = x − 10  

x * = 10; x = x * 10 x/=10; x = x/10 

x// = 10; x = x//10 

x * * = 10; x = x * * 10 

x = 1    

y = 2 

print (x) 

x = x + y  

print (x) 

or 

x = 1 

y = 2 print (x) 

x+ = y; x = x + y x = 10 

x+ = 10 

print(x) 



Basics of Python Programming 

16 

 

Sample Program 

x = 10 

y = 20 

z = 0 

z = x + y; 30 

print (z) 

z + = x ; 40 

print (z) 

z * = x; 400 

print (z) 

z/ = x; 40.000 

print (z) 

z = 3 

z% = x 

print (z); 3 

 

 

 

 



Introduction, Literals, Variables and Operators 

17 

 

Bitwise Operators:  

Operators do operations on bits 

(1) Example: (20) = 1 0 1 0 0 → five bits  

      

Integer = 0 0 0 1 0 1 0 0 

 

* Binary representation of the value 20.  

There are six bitwise operators 

A. Bitwise AND: &  Example: a & b 

B. Bitwise OR: 1  Example: a/b 

C. Bitwise XOR: ^  Example: a ^ b 

D. Bitwise complement 

E. Bitwise left shift <<  

F. Bitwise right shift 



Basics of Python Programming 

18 

 

 

a = 20 

b = 4 

a = 16; 

b = 32; 

0001 0 0 0 0 

0 0 1 0 0 0 0 0 

print (a & b) 

output = 04 

print (a & b) 

output = 0 

0 0 0 0 0 0 0 0 

 

Note: bin (10) = ‘0b1010’ 

bin (128) = ‘0b10000000’ 

Identity Operator: 

They include, is, is not 

• Identity operators compare the memory locations of two objects. 

 

 

 



Basics of Python Programming https://www.kdpublications.in 

ISBN: 978-81-19149-45-2  

19 

 

Chapter 2 

Chapter 2: Control Structures 

• Control structures are used to alter the order of execution of a 

program. 

• There are Three types of control structures 

(1) Decision Making Statements: 

→ if statement 

→ if … else statement 

→ if … else if … else statement 

→ nested if statement 

Example: 

a = 33 

b = 200 

if b > a; 

print (“b is greater than a”) 

print (b > a) 

Output 

b is greater than a 

True 



Basics of Python Programming 

20 

 

Note: Python rules on indentation, using whitespace, to define a set of 

statements of functions. 

Example: Slope in the code 

If statement without indentation 

if b > a; 

print (b > a) 

Indentation error: expected an indented blank/space. 

a = 200 

b = 33 

if b > a; 

print (“b is greater than a”) 

elif a = =b; 

print (“a is greater than b”) 

print (“OK”) 

Nested if statements:  

Example: To determine whether a number is positive, negative or zero 

using nested if statements. 

# num = input (“enter a number”) 

Num = int(input (“enter a number”) 

if num > = 0; 



Control Structures 

21 

 

if num = = 0; 

print (“Zero”) 

else 

print (“Positive number”) 

else 

print (“Negative number”) 

print (“OK”) 

(2) Python Loops: 

In some situations, in programming, it is required to repeat some set of 

statements to attain the required results. 

This repetition can be achieved by using a loop control structure. 

Types of loops: 

→ while 

 → for 

→ nested loop: loop inside another loop 

Nested loop: 

Program to compute the factorial of first n natural numbers. 

(3) Python Control Statement: 

→ Break: Break the loop immediately when the condition is true. 

→ Continue: Returns the control to the beginning of the loop. 



Basics of Python Programming 

22 

 

→ Pass: It represents a null operation; nothing happens when it executes. 

• Python Native Data Types: 

→ Standard data types: To handle group of data. 

1) Number: Numeric data type Example: int, float, complex 

2) String → sequence data types 

3) List : List of items → sequence data types 

4) Tuples: → sequence data types 

5) Dictionary 

6) Set  

7) Boolean data type 

• List: General purpose; most widely used data structure, grow and 

shrink size as needed; sequence type, sortable. 

• Tuple: Immutable (cannot be modified), useful for fixed data, faster 

than lists, and sequence type. 

Note: 

• Lists are ordered sequences of values. 

• Tuples are ordered, immutable sequences of values. 

• Sets are unordered groups. 

• Dictionaries are unordered elements of key-value pairs. 

Note: List is similar to array in ‘c’ language but the only difference is 

that, array is a → group of similar elements where as list is a group of 

dissimilar elements. 

 



Control Structures 

23 

 

Sample Program: 

List = [1, 2, 3, 4, 5, “Biomedical”, ‘Ramesh’, “chandana”, “Niru”] 

print (list) 

for i in list 

print (i) 

print (“OK”) 

print (“The operation is successful”) 

print (list [0]) 

print (list [1]) 

print (list [2]) 

print (list [3]) 

list [0] = 10 

list [1] = 20 

print (list) 

list.append (29) 

list.extend ([76, 23, 15]) 

print (list) 

list = [12, 13, 14, 15, 16, 17, 18, 19] 

print [(len (list)] 



Basics of Python Programming 

24 

 

print [max (list)] 

print [(min (list)] 

num = [I for i in range (10)] 

print (num) 

Note: The elements in a list can be altered whereas tuples are immutable 

and x cannot be changed. 

# list = [10, 20, 30, 40, 50] 

print (list) 

list = [29, 28, 27, 26, 25, 24] 

list.sort() 

print (list) 

list.remove (24) 

print (list) 

list.remove(25) 

print (list) 

print (list.index (27)) 

list.clear () 

print (list) 

 

 



Control Structures 

25 

 

Sample Program: 

tuples = (10, 20, 30) 

print(tuples) 

for i in tuples: 

print (i) 

tuple 2 = (1, “Ramesh”, “Chandu”, “Niru”) 

print (tuple 2) 

tuple 3 = (100, [10, 20, 30], 1, (“Ramesh”, “Chandu”, “Niru”)) 

print (tuple 3) 

tuple 3 (tuple 1, tuple 2) 

x, y = tuple 3 

print (x) 

print (y) 

print (sum (tuple 1)) 

print (max (tuple 1)) 

print (min (tuple 1)) 

Note: Tuples are similar to the lists the only difference is that tuples are 

immutable. Due to this, 

the tuple possesses certain advantages in Python over lists. 

• Set: is an unordered collection of elements 



Basics of Python Programming 

26 

 

a. No duplicity in set alike tuple 

b. Mutable 

c. Can group certain heterogeneous types of data. 
d. Used to perform all mathematical set operations such as 

union, intersection, difference, etc., 

dataset1 = {10, 20, 30, 40} 

dataset2 = {50, 60, 70, 80} 

print(dataset1, dataset2) 

# Sample Program: 

Dict = {“Name” : “Ramesh”, “College” : “RV”, “Year” : “1994”} 

print(dict) 

x = dict [“Name”] 

print(x) 

print(dict[“College”] 

print(dict[“Year”] 

# Sample Program: 

list = [1, 2, 3, 4, 5, “Ramesh”, “Chandu”, “Niru”] 

print (list) 

for i in list: 

print (i) 

print (len (list)) 



Control Structures 

27 

 

x = len (list) 

print (x) 

list 1 = [1, 20, 13, 14, 17] 

print (max(list1)) 

print (max(list1)) 

print (min(list1)) 

list1.append (100) 

print (list 1) 

list1.extend ([200, 300, 400, 500)] 

print (list 1) 

list 1. remove (500)  

print (list 1) 

list 2 = [i for i in range (1, 10)] 

print (list 2) 

for i in list2: 

print (i) 

print (“OK”) 

print (sum (list 2)) 

list 2. Reverse () 



Basics of Python Programming 

28 

 

print (list 2) 

print (list, list 1, list 2) 

• Indexing 

a. The index of elements of a list starts from 0. 

b. Example: If a list contains 10 elements, then its index will vary from 

0 to 9. 

c. If a user tries to access an element from a list beyond the range, it 

will result in an Index error. 

d. Type error: If the user tries to access a list element using floating 

points indexing. 

• Tranversing a list 

a. Accessing or visiting elements of a list. 

b. The methods to access the elements of a list. 

(1) Indexing (2) Negative Indexing (3) Slicing 

Note: Indexing operator / subscript operator → [ ] 

# Sample Program: 

n = int (input (“enter the number”) 

x = [i + 10 for i in range (n + 1)] 

print (x) 

for i in range (len (x)): 

print (“x [“, I,” = “, x [i]) 

x = [10, 20, 30, 40] 



Control Structures 

29 

 

print (x) 

print (x[-1]) 

print (x[-2]) 

print (x[-3]) 

print (x[-4]) 

print (x[-5]) → Index Error 

 

• Slicing: 

a. The slicing operator is used to access the elements of a list within a 

specific range. 

b. [:] is the slicing operator. 

c. The slicing operator is used with different ranges of positive as well 

as negative indexing. 

d. The syntax of the slicing operator is [beg: end], the end is excluded 

from the range. 

• List methods: 

Examples: append, extend, remove, sort, reverse, etc., 

• List Functions 

Examples: comp (list1, list2), len(list), max(list), min(list), etc 

Sample Program: 

x = [10, 20, 30, 40] 



Basics of Python Programming 

30 

 

x.append (50) 

x.extend ([60, 70, 80]) 

x.remove (10) 

x.reverse () 

x.sort () 

print (len(x)) 

print (max (x)) 

print (min (x)) 

• List Comprehension 

a. It is a very useful feature in the Python language. 

b. It provides an extremely efficient way to create a new list from the 

existing one. 

Sample Program: 

even = [i for i in range (50) if i%2 = =0] 

print (even) 

odd = [i for i in range (50) if i%2! = 0] 

print (odd) 

• List Membership Test 

a. The most important operation is the searching. 

b. The ‘in’ operator is used to search for an elements in the list. It 

returns true the if element exists, otherwise false. 



Control Structures 

31 

 

Sample Program: 

x = [10, 20, 30, 40, 50] 

print (20 in x) 

print (60 in x) 

→ The ‘in’ operator is also used to iterate through the list using a for 

loop. 

Sample Program: 

for city in [“ ”, “ ”, “ ”]; 

print (“I visited”, city) 

x = [1, 2, 3, 4] 

print (x) 

for i in x: 

print (i) 

for i in range (len (x)) : print (“x [“, i, ]”, x [i]) 

print (2 in x) 

print (5 not in x) 

Sample Program 

x = int (input (“enter the number”)) 

list1 = [i for i in range (x + 1)] 

print (list1) 



Basics of Python Programming 

32 

 

even = [i for i in range (x + 1) if i%2 == 0] 

print (“Even = “, even) 

odd = [i for i in range (x + 1) if i%2 ! = 0] 

print(“odd” = ”, odd) 

print (“OK”) 

Alternative Statement: 

even = [i for i list 1 if i%2 = = 0] 

odd = [i for i list 1 if i%2! = 0] 

 

# Sample Program:  

x = {“a” : 4, “b” : 2, “c” : 3, “d” : 4} → Dictionary 

print (x) 

y = x.items ( ) 

print (y) 

for key, val in list (x.items ( )): 

print (key, val) 

for key, val in list (x.items ()): 

print (val, key)  

  



Basics of Python Programming https://www.kdpublications.in 

ISBN: 978-81-19149-45-2  

33 

 

Chapter 3 

Chapter 3: Functions, Files and Object  

Oriented Programming 

* Pass by value vs pass by reference: 

→ The two-way communication between the function caller and function 

definition is achieved through arguments.  

→ In Python language arguments can be passed by value and by 

object reference. 

# Sample Program: (Pass by Value) 

def update (x):  

x = [10, 20, 30]  

print (“Inside list”)  

print (x)  

return x = [1, 2, 3] 

update (x)  

print (“outside list”)  

print (x)  

print (“OK”)  

This concept is known as pass-by value, in this case, if any modifications 

are made to the values in the function definition, then it does not have 

any effect on the arguments of the caller function. 



Basics of Python Programming 

34 

 

# Sample Program: (Pass by Object Reference) 

def update (x):  

x.extend ([100, 200, 300])  

print (“outside list”)  

print (x)  

print (“OK”) r 

eturn x = [1, 2, 3]  

update list  

In this program, the new values are appended after the old ones and a 

similar result is printed both in the function definition and after the 

function call. 

Python Anonymous Function: (Lambda Function) 

→ def keyword is to define the normal functions.  

→ Lamda keyword is to create an anonymous function.  

Syntax: Lambda arguments: Expression  

Lambda arg1, arg2, arg3, … argn; expression 

→ Python has two tools for building functions  

(1) Def  

(2) Lambda  

→ Python allows to create anonymous function ‘x’ function having no 

names using a facility called lambda function.  



Functions, Files and Object-Oriented Programming 

35 

 

→ Lambda functions are small functions, usually not more than a line.  

→ The result of the expression is the value when the lambda is applied 

to an argument.  

Example: Product = lambda a, b, c, d: a * b * c * d  

prod = product (1, 2, 3, 4)  

print (prod)  

Here, lambda is just a single line statement, that performs the intended 

task and the result is assigned to the product variable. 

product_1 = lambda a, b, c, d: a * b * c * d 

product_2 = lambda a, b, c, d: a + b + c + d  

prod_1 = product_1 (1, 2, 3, 4)  

prod_2 = product_2 (1, 2, 3, 4)  

print (prod_1)  

print (prod_2)  

print (“OK”) 

# Sample Program on Lambda Function 

Product = lambda a, b, c, d: a * b * c * d  

Add = lambda a, b, c, d: a + b + c + d  

Prod = product (2, 3, 4, 5)  

Add = add (2, 3, 4, 5)  



Basics of Python Programming 

36 

 

Print (“product of numbers is”, prod)  

Print (“addition of numbers is”, add)  

Print (“ok done”) 

#Sample Program 

def funct_1(x):  

x.exten ([20, 30, 40])  

print (x)  

print (“Inside the function”)  

for i in x:  

print (i)  

return x = [1, 2, 3, 4]  

funct_1(x)  

print (“outside the function”)  

print (x)  

print (“OK”) 

* Recursion: Program to compute the factorial of a number using 

recursion. 

def fact(n):  

if (n = = 0):  

return (1)  



Functions, Files and Object-Oriented Programming 

37 

 

else:  

return (n * fact (n − 1))  

num = (input (input (“enter the number”))  

result = fact (num)  

print (“The factorial of a given number is”, result)  

print (“ok, done”) 

* Scope and lifetime of variables 

val = 0  

def scope (val):  

print (val)  

return scope (10)  

print (val)  

The scope of a variable can either be local or global. It is a region of the 

program where it is recognized. 

→ The lifetime of a local variable is as long as that function executes.  

→ The lifetime of a global variable is as long as the whole program 

executes.  

val = 0 def = fun_1(val):  

print (“value = “, val)  

return  



Basics of Python Programming 

38 

 

num = int (input (“enter the value of val:”))  

func_1 (num)  

print (“value = “, val)  

print (“OK, done”) 

* Files: Collection of data. 

Open a file: open () function  

*Operations on files  Read/write operation: read (), write () 

methods  

Close the file: close () function 

* Opening the file   

→ open (filename, mode)   

            Access mode: Read, write, append, etc  

Name of the file 

→ file object = open (file_name, access_mode)  

→ Example: text_file = open ("sample.txt", 'w')  

File object  

Name of the file 

 

 



Functions, Files and Object-Oriented Programming 

39 

 

# Sample Program 

text_file = open (“sample.txt”, ‘w’)  

text_file. Write (“Hello”)  

text_file close ()  

text_file = open (“sample.txt”, ‘a’) 

text_file.write (“welcome to IT Department”) t 

ext_file close ()  

text_file = open (“sample.tex”, ‘r’)  

print(text_file.read()) 

text_file close () 

* Object Oriented Programming 

→ Encapsulation     Class  

→ Data hiding and abstraction    OBject 

→ Inheritance  

→ Polymorphism     Overloading 

→ Dynamic binding    Overriding 

 

 

 



Basics of Python Programming 

40 

 

# Sample Program 

# Function  

def display (name)  

print (“Hello”, name)  

return  

# main  

display (“sam”)  

display (“Ram”)  

Example of procedural-oriented approach.  

In this approach, the functions are the main aspect.  

* Object Oriented Programming: In this approach, the class and 

objects are the main aspects.  

* Class: Blueprint/template of an object. Using class we can create many 

objects.  

* Example:  

→ Object: House  

→ Class: Sketch/prototype/plan  

→ Using the plan we can build many houses, in a similar way  

→ Using class, we can create many objects. 

 



Functions, Files and Object-Oriented Programming 

41 

 

# Sample Program 

Class person:  

def display (self):  

Refers to object: display (person1)  

No need to send object externally  

print (“Hello”) 

person1 = person ()  

person1.display () 

# Program – 2 

Class person:  

def_init_ (self, name):  

self.name = name  

def display (self):  

print (“Hello”, sefl.name)  

person1 = person(“Ram”)  

person1.display() 

 

 

 



Basics of Python Programming 

42 

 

# Program_3: 

Class person:  

def_int_ (self, id, name, salary):  

self.id = id  

self.name = name  

self.salary = salary  

def display (self)  

print (“Id = “, self.id, “|n”, “Name = “, self.name, “|n”, “salary = 

“, self.salary)  

person1 = person (1, “Ramesh”, 3000)  

person1.display()  

print (“OK, done”) 

# Program_3 

Class demo:  

count = 0  

def_init_(self):  

dem.count+ = 1  

demo1 = demo ()  

demo2 = demo ()  

demo3 = demo ()  



Functions, Files and Object-Oriented Programming 

43 

 

print (“The number of objects created is”, demo.count)  

print (“OK”) 

# Program_4: 

Class demo:  

def_init_ (self, x, y):  

self.x=x  

self.y=y  

def add(self):  

print (“addition = “, self.x + self.y)  

def sub(self):  

print (“subtraction = “, self.x − self.y)  

def mul(self):  

print (“Multiplication =”, self.x * self.y)  

demo1 = demo (2, 3)  

demo1 = add ()  

demo2.sub ()  

demo3.mul ()  

print(“done”) 

 



Basics of Python Programming 

44 

 

# Sample Program 

Class demo:  

def get_data(self):  

self.x = int (input (“enter the first number:”))  

self.y = int(input(“enter the second number:”))  

def display_data(self):  

print (“x=”, self.x)  

print (“y=”, self.y)  

demo_1 = demo ()  

demo1.get_data ()  

demo_1. display data () 

# Sample Program 

Class done:  

no_of_objects = 0  

def_init_(self):  

demo.no_of_objects + = 1  

def get_data(self): 

self.x = int (input (“enter the first number:”))  

self.y = int(input(“enter the second number:”)) 



Functions, Files and Object-Oriented Programming 

45 

 

def display_date(self):  

print (“x=”, self.x)  

print (“y=”, self.y)  

demo1 = demo ()  

demo2 = demo ()  

demo3 = demo ()  

demo4 = demo ()  

demo1 get_data ()  

demo1.display_data ()  

demo2.get_data ()  

demo3.get_data ()  

demo4.get_data ()  

demo2.display_data ()  

demo3.display_data ()  

demo4.display_data ()  

print (“The number of objects created”, demo.no_of_objects) 

 

 

 



Basics of Python Programming 

46 

 

# Sample Program 

Class demo:  

no_of_objects = 0  

def_initi_(self):  

self.id = int (input (“enter the ID”))  

self.name = int (input (“enter the name”)) 

demo.no_of_objects + = 1  

def display(self):  

print (“ID: = “, self.id, “|n”, “Name: =”, self.name)  

demo_1 = demo () demo_1. display ()  

demo_2 = demo () demo_2. display ()  

demo_3 = demo () demo_3. display ()  

demo_4 = demo () demo_4. display ()  

print (“The number of objects is created: =”, demo.no_of_objects) 

 



 

 

 

 


