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Abstract: 

Cosmology studies the composition and evolution of the universe, and the Λ CDM model 

describes three elements: dark energy, dark matter, and visible matter. Dark energy causes 
the Earth to accelerate. Dark matter constitutes most of the mass due to the gravitational 

effect. Visible matter makes the world visible. Although the Λ CDM model is consistent with 

observational data, important questions remain, including the nature of dark matter, the 

cause of the acceleration, and the physical background of the initial cosmic structure. 
Solving these questions is crucial to a deeper understanding of the composition and function 

of the universe. 
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18.1 Introduction: 

Cosmology is the study of the history, evolution, and ultimate fate of the universe and is 
greatly influenced by technological advances. Historically, advances in technology have 

continued to improve our understanding of the world. From the invention of the telescope by 

Galileo, which opened a new field of astronomical observations in the 17th century, to the 
development of electronic devices and instruments, every technology has provided new 

tools and ways to explore the deep world. 

In modern times, technologies such as powerful cameras with exciting imaging and 

spectroscopic capabilities, computer simulations, and artificial intelligence have 

revolutionized cosmology. These innovations are allowing scientists to go deep into space 
and ahead of time, leading to major discoveries such as detailing cosmic microwave 

background radiation, detecting gravitational waves, and identifying exoplanets. 

In addition, technological advances have led to the construction of large observatories and 

interferometres such as the Very Large Telescope (VLT) and the Laser Interferometre 
Gravitational Wave Observatory (LIGO), which have played an important role in expanding 
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our understanding of structure. and the dynamics of the universe. In addition, space missions 
such as the Hubble Space Telescope, the James Webb Space Telescope, and various Earth 

rovers have provided us with unprecedented views of distant galaxies and the solar system. 

As we continue to develop and integrate new technologies, from quantum computing to 
multimetres to new data science, the field of cosmology is on the verge of profound 

discovery. These technologies not only improve our observational capabilities, but also help 

develop theoretical models, bringing us closer to answers to important historical questions 

such as how many muscles and the fate of the world. 

18.2 Cases in Science: 

18.2.1 Cosmic Probes: 

Cosmology is the study of the content and evolution of the universe. The Λ CDM Standard 

Model shows three main components: dark energy, which makes up most of the mass of the 

universe and is cut off by gravitational problems, accelerating the dark matter of the 
universe; Although observational data support this model, im- portant physiological 

questions remain unresolved. These include the nature of dark matter, the origin of the 

expansion of the universe, and the physical background of the first cosmic structure. 

Using statistical power from current and future cosmological experiments, many 
unanswered questions in cos- mology still remain to be resolved or progress toward 

resolution is being made, and the prospect is exciting. Completing a retrospective survey of 

the data presented will require a process that can extract as much infor- mation as possible 

from the survey while controlling for the processes and theoretical models involved in the 

measurement. 

The process of obtaining cosmological limits in various subfields of cosmology; is limited 

to determining the location, collecting measurements and comparing them with theoretical 

models for parameter extraction. This section highlights examples where instrument 
learning has had a major impact on cosmic explorers, as well as further advances in 

sentiment analysis. The above instructions and functions are representative and not 

comprehensive. 

instrument learning is essential to detect and classify cosmic sources, extract information 

from images, and demonstrate effective strategies. Important cosmological discoveries 
include galaxy clusters, supernovae, gravi- tational lensing, and the cosmic microwave 

background. Combining multiple instruments helps improve cosmo- logical parameters by 

covering more space models and addressing different astrophysical processes and obser- 
vations. instrument learning can increase the potential of multisystem cosmology by 

influencing relationships and integrating knowledge from various fields of science. 

Many cosmological analyzes are based on astronomical catalogs derived from images and 

often consider the” best” model rather than the distribution of existing objects. This leads 
to loss of unsaved data and uncertainty in low-level measurements. instrument learning 

makes it possible to perform the desired action, detect the action, and characterize the object 

image.A recent demonstration of decoupling in a crowded star field suggests that this 
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approach has the potential to improve the results of cosmological research over the next 
decade. instrument learning has emerged as a promising method that outperforms statistical 

methods to detect and strengthen gravitational lenses. Initial successes include community 

challenges and ongoing applications for Dark Energy Survey (DES) and Dark Energy 
Spectroscopic Instrument (DESI) data. Recent studies have focused on measurement 

uncertainty and uncertainty quantification for observed lensed objects and lensed galaxies. 

In anticipation of the big data future studies like Euclid and LSST will produce, major work 

is being done to optimize instrument learning for space/lensing characterization, Hubble’s 

continuous thinking, and analyzing dark matter in etail. 

Compared to traditional methods, instrument learning has demonstrated the advantages of 

weak gravitational lensing. It improves cosmological parameter inference using data beyond 

traditional one- and two-point statis- tics. In addition, instrument learning outperforms 
traditional estimates on size maps and can improve weak lensing convergence maps by 

detecting galaxy ellipticities. 

instrument learning techniques excel at a variety of cosmic microwave background (CMB) 

analysis tasks, including CMB lens reconstruction, foreground separation and polarimetric 

map extraction, even processing scenarios that describe the CMB signal and observations 
using angular power spectrum estimates. Given the expected complexity of the data, these 

strategies will improve the results of future studies such as the Simons Observatory, CMB-

S4, and experiments such as CMB HD. Additionally, instrument learning was explored to 
characterize galaxy clusters from CMB lensing features in Sunyaev-Zel-dovich and CMB 

map analysis. 

instrument learning has been proposed as a way to unravel the complexity of the 21 cm 

middle hydrogen data probing reionization time. Its applications include parameter 

estimation and signal extraction, providing a good way to improve analysis in this field. 

18.2.2 Multi-Massanger in Astrophysics and Domain of Time: 

In an era of region-wide research across the electromagnetic and gravitational wave 

spectrum, instrument learn- ing is particularly time-sensitive. Observers such as the Vera C. 

Rubin Observatory’s Survey of Ancient Space and Time (LSST) will produce 
approximately 10 million observations of time domain phenomena per night, beyond the 

capabilities of human observations. In addition to LSST, future facilities such as the Very 

Large Space Telescope (ngVLA), CMB-S4, and collaborations such as LIGO-VIRGO-

Kagra will provide diverse, multi- person precursors to climate change and the world over 

the next decade. 

Field-wide surveys produce periodic alerts of rates exceeding spectral capabilities. 

Currently, less than 5% of recent events reported to the International Astronomical Union 

Temporary Name Server (TNS) are spectrally tracked. An order of magnitude increase in 
the LSST stimulus will strengthen existing resources. From a cosmo- logical perspective, 

Type Ia supernovae are important for measuring the Hubble constant. instrument learning 

techniques are required to classify these events to facilitate spectral monitoring or archival 

analysis. Significant progress has been made in the development of instrument learning 
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(ML) methods for ad hoc event character- ization and classification based on comprehensive 
scientific data, driven by alerting agents such as NOIRLab’s ANTARES and algorithms 

such as RAPID, Superv Nnova, and Super RAENN. However, there are still significant 

issues to be resolved to understand the expected diversity of events observed before LSST 

occurs. 

Additionally, the instrument learning community has developed new technologies such as 

transformers, implicit stochastic equations, and neural networks that promise to solve 

problems in the future. Unsupervised studies will play an important role in the next decade, 
especially in identifying rare cases (negative detection) hidden in alert streams. Although 

only one kilonova event (GW170817) is found in the gravitational wave and electromag- 

netic spectrum, LSST should find more kilonovae than the LIGO-Virgo-Kagra detection 

limit. The technique can also detect missing in-flight events, as seen by the team processing 
data from Pan-STARRS, Dark Energy Search (DES), and the Zwicky Transient Facility 

(ZTF). Research across the region promises understanding of groups of objects over time. 

However, modeling these populations with important physics, such as cosmological 

parameters for Type Ia supernovae, introduces multilevel modeling challenges. 

Traditionally, using techniques such as Markov Chain Monte Carlo sampling, simple 

assumptions are made in the sample to be evaluated, leading to bias. Leveraging instrument 

learning models such as deep neural networks in schemes such as variational inference can 

effectively model what is specified in the high domain. The focus group hopes to 
complement traditional technology with many new methods to improve the perfor- mance 

of GPUs at high performance. Multi-messenger astrophysics (MMA) brings additional 

complexity to the above challenges. Events that can produce gravitational waves in warped 
space-time are rare. In addition, a significant part of these events, such as supernovae 

approaching collapse, neutron star mergers, and the merger of neutron stars and black holes, 

evolve rapidly and emit electromagnetic radiation. 

For example, a normal MMA event GW170817 will only publish 1-2 detections of the 

current regulation in stud- ies such as LSST. The identification and characterization of 
multiple missile astrophysics (MMA) events pose significant challenges due to their rarity 

and heterogeneous data, many of which are available from different sources. instrument 

learning (ML) techniques and simulation-based inference techniques, including nonlinear 
detection techniques and hybrid models such as convolutional recurrent neural networks 

(CRNN), are impor- tant. These ideas are necessary to make different observations, mark 

events in an hour and do research work automatically. In addition, in order to understand 
these mysterious situations, it is necessary to invest in cyber infrastructure in terms of 

storing, processing and sharing public and private data. 

18.3 Relation in Data and Computing: 

18.3.1 The Processing of Data: 

In today’s large-scale research, there are many ways to increase the speed and accuracy of 

data processing during and after data collection. These improvements can be mentioned in 
the following nominal steps.New intelligent methods have been found to increase the speed 
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and accuracy of data processing in large-scale cosmological studies. This involves quickly 
selecting and reviewing important data based on analysis, especially for data changes or 

time differences that need to be processed in a timely manner. Although different imaging 

methods have been implemented, such as Antares in LSST, their predictive power is limited 
in terms of detection accuracy and limits the understanding of selected objects. As seen in 

particle physics programming, embedding deep learning algorithms into specialized 

computing units such as TPUs and FPGAs can be solved. This rapid process can process 

raw data for rapid detection of monitoring sites or long-term operational data, bypassing 
data changes over time and making rapid changes for updated times. New intelligent 

methods have been found to increase the speed and accuracy of data processing in large-

scale cosmological studies. This involves quickly selecting and reviewing important data 
based on analysis, especially for data changes or time differences that need to be processed 

in a timely manner. Although different imaging methods have been implemented, such as 

Antares in LSST, their predictive power is limited in terms of detection accuracy and limits 
the understanding of selected objects. As seen in particle physics programming, embedding 

deep learning algorithms into specialized computing units such as TPUs and FPGAs can be 

solved. This rapid process can process raw data for rapid detection of monitoring sites or 

long-term operational data, bypassing data changes over time and making rapid changes for 

updated times. 

18.3.2 High Petrformance Computing: 

In the next decade, high-performance computing (HPC) will become essential for the 

application of instrument learning (ML) in cosmology. Many data from cosmological 

surveys such as DESI, eROSITA, Euclid, Rome Space Telescope, Vera C. Rubin 
Observatory, Simons Observatory, and Square Kilometer Array (SKA) will require 

dedicated data hosting infrastructure. Additionally, the complexity of the models used to 

explain these studies requires computation and energy storage. 

Training an ML model to interpret a galaxy survey through comparison to cosmological 
simulations involves several HPC-intensive tasks:(1)Producing simulations at large HPC 

facilities, requiring significant GPU or CPU hours.(2)Storing simulation outputs on large, 

high-throughput file systems, totaling petabytes.(3)Executing analysis (generation of data 

products) in cluster environments, often using CPUs.(4)Training ML models on these data 
products, utilizing GPUs or other accelerators. The requirements of these projects should 

increase in the next decade because future studies will cover a wider area and deeper in the 

sky, requiring the simulation of larger volumes and better solutions. While instrument 
learning requires HPC, it also creates opportunities. Traditional simulations can be 

accelerated or simulated with instrument learning techniques that allow high resolution 

based on low resolution and replace expensive physics numbers with instrument learning 
interpolation. This may increase the scalability of simulations but will also create difficulties 

in storing and managing the resulting data, which is expected to be in the tens to hundreds 

of petabytes. To improve the use of simulations and analyses, big data should be stored 

centrally in publicly accessible national or international HPC facilities. Users should be able 
to access data directly without needing to create a copy elsewhere. Additionally, subsets of 

the data should be easily downloaded to facilitate searching, requiring only a few megabytes 

of data items. Because of its extensive storage space and distributed computing resources, 
cloud computing offers an attractive option for some HPC applications. It provides users 
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with a simple software stack to create a instrument learning-ready environment. However, 
applications that require efficient communication between multiple operators, such as 

simulations or some types of instrument learning, will not work well in the cloud. However, 

HPC opportunities in the cloud are expected to increase over the next decade thanks to 
instrument learning, and efforts to promote this in research projects will be encouraged and 

supported. Ensuring reproducible research in an HPC environment requires engaging new 

users with HPC resources. Reproducibility efforts in astrophysics range from the use of 
commercial software testing applications to completing studies that make it easier for 

readers to understand the paper’s results. While these operations are typically hosted in the 

cloud and use little data and CPU time, their transparency and reporting are of significant 

value to the cosmology instrument learning community. HPC facilities must provide access 
points to enable these functions, including access to big data and computing resources, 

primarily GPUs. Increasing demand for astrophysics can spur collaboration between 

scientists and industry. Techniques used in industry to store certain types of data, such as 
videos on platforms such as YouTube, can be used to reduce the need for storage in 

astrophysics. This will allow for a more comprehensive analysis of the data. Over the next 

decade, it will evolve into a multitasking mission to complement research at the intersection 
of high-performance computing (HPC), instrument learning (ML), and cosmology. This 

requires supporting efforts such as hosting large observational databases, running 

comprehensive cosmological experiments, and training instrument learning models to 

bridge the two. HPC data centers must ensure that this information is publicly available so 
that users can perform direct calculations or download subsets of their normal workloads. 

On the software side, expertise in cloud hosting, packaging, and software environments is 

critical to the dissemination of researchers’ requirements and the performance of HPC 

hardware. 

18.4 How to Simulate? 

instrument learning algorithms excel at identifying patterns in high volumes of data, 

allowing simulations to serve as a laboratory for discovering unknown patterns and 

understanding processes within the body. For example, instrument learning methods used 
for fluid dynamics simulations have shown previously unknown relationships between 

galaxy properties and do not explain the composition of the universe. This shows that 

instrument learning has the potential to revolutionize many areas of cosmology and galaxy 

formation that deal with high data. 

cosmology, the main problem concerns the distribution of data. Although Gaussian density 
fields can extract all the information using the power spectrum, non-Gaussian density fields 

do not have good measurement quality. Research shows that important cosmological 

information exists at very small scales and cannot be obtained from the energy spectrum 
alone. Using these scales can improve cosmological constraints but requires non-invasive 

methods such as numerical simulations. In addition, uncertainty in astrophysical events such 

as supernovae and active galactic nucleus (AGN) feedback can also affect these scales, 
creating the need to explain the effects of the baryon in maintaining the conditions by 

marginalizing them. In the best-case scenario, instrument learning methods can 

simultaneously work on cosmological and galaxy formation constraints. This will involve 

using state-of-the-art cosmological fluid dynamics simulations to train neural networks to 
extract maximum cosmolog- ical and astrophysical information from multi-wavelength 
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observations. This approach represents a theoretical framework for extracting detailed 
information from cosmological studies. To achieve the goal of extracting com- plete 

information from cosmological studies, more advanced fluid dynamics simulations as well 

as instrument learning are required to improve simulation solutions or accelerate simulation 
processes. Additionally, develop- ing and making publicly available datasets for cosmology 

missions will facilitate advances in instrument learning techniques necessary for these 

efforts. Best wishes for extrapolating data from cosmological studies through in- strument 

learning come with important caveats. First, it is based on the results of numerical 
simulations, which may not reflect reality, especially when many galactic objects are taken 

into account. Second, statistical accuracy and error are important to determine confidence 

in detecting potential effects on role, such as the number of elements using neutrinos. 
Solving these problems could lead to advances in numerical simulations of fluid dynamics 

to improve analysis and the development of instrument learning methods to accommodate 

similar effects due to inaccuracy of numerical and simulation products. As the size and 
complexity of simulated data and analyzes continues to grow, there is an urgent need to 

develop a more powerful instrument learning system that can handle multiple readily 

available datasets. This enables the integration of information from hydrodynamic 

simulations and astrophysical studies while also learning from their similarities and 
differences. These differences: It can arise from many sources, including assumptions, 

numerical properties, computational limitations, or even unknown physical phenomena not 

involved in the experiment. Additionally, analysis effects, error checking, and data 
compression may vary additionally. Because of this difference, the model trained in 

simulation will have a large impact when applied to real data. Field adaptation methods 

show promise in as- trophysics and cosmology as shown in Refs [92, 93]. This method 

reveals common features for each data set based on the training model, classifies the data, 
and allows the model used to be developed simultaneously in many documents. Future 

progression and implementation of registration changes will be important to create more 

robust learning systems that are resilient to disparate data, noise, and interference. 
Additionally, since changes to the record are not based on record information, they can be 

used for new analyses. This capability is essential for creating electronic systems that are 

initially studied in simulations but can be operated instantly during cosmological 

observations. 

18.5 The Operation of Survey and Design of Instrument: 

18.5.1 The Operation of Survey: 

Cosmological surveys like LSST will recapture images of the sky and revisit the same area 

up to 1,000 times per decade. Many factors such as scanning speed, exposure depth, filter 

use can affect search results. The need for a near-current distribution of frequent events, 
combined with the different objectives of research and survey activities, creates problems 

in planning surveys. The manual adjustment process is inefficient, especially for short- and 

long-term conditions such as weather conditions. Coordinating observations from multiple 
telescopes for spectral monitoring or multiwavelength/messenger measurements often 

requires months of delay in agreeing to the committee’s time allocation. Measuring the 

achievement of specific research goals through the discovery of new phenomena is the most 
challenging task. Current methods, such as those used in Dark Energy Research, involve 
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simulating high-level measurements over many years from a single run. Manual review of 
these criteria may suggest a new change and retry until the relative value is reached. 

Adaptive methods such as feature-based planning, designed as a formal optimization 

problem within the framework of reinforcement learning, have been shown to optimize 
many competing scientific objectives and outperform conventional telescopes. This process 

also demonstrates the ability to recover from unexpected events such as device failure. 

Additionally, unsupervised methods using neural networks show promise in improving 
research objectives without the need for pre-existing analytical models. These efforts 

represent a rare example of intelligence-driven resource allocation for reflection algorithms. 

Investing in automatic programming of glasses will reduce costs and increase efficiency. 

The time saved is evident in the follow-up of the applicant, review of the home line, and 
integration of the various site(s). In addition, automatic planning has the ability to optimize 

scientific results by prioritizing fields and products according to their relevance to research 

objectives, thereby maximizing data quality for all purposes, 

including research. Automatic resource allocation in telescopic observations faces many 
significant challenges. Tracking algorithms trained on simulations or previous data may be 

biased when applied to unobserved data, so alternative methods should be explored. In 

addition, explaining the decisions and policies resulting from planning algorithms and their 

economic and transportation benefits is important for practical, human centered 
understanding and security. In order to solve these problems, managing measurement data 

and problems, realizing measurement results, measuring electricity meter measurements of 

different sizes and Camera consortia are considered as important steps of this study.  

18.5.2 The Design of Instrument and Experiments: 

Creating laboratories and equipment to meet research needs is a demanding task. Instrument 
complexity must also increase as research needs evolve, such as the need for greater analysis 

and sensitivity. This increase in complexity has a negative impact on the time and cost of 

future testing. In the design process of laboratories and instruments, people first develop 
hypotheses, create various research objectives to test these hypotheses, and develop 

teaching principles from the data set. They then develop tools and custom assessments by 

de- termining the appropriate type and type of data needed to complete these assessments. 
Although the process may seem linear, there is usually a brief description of the steps 

because experiments often involve multiple research objectives and measurements. Each 

element in the system must be developed independently in essen- tially different software 

systems, with equipment and communications equipment among them, until a specific 
model that meets the research needs is created. In the design process of monitoring facilities 

and equipment, most devices are generally not connected together in a single software base. 

Input and output communication between experimental devices usually occurs via email, 
and many simulators run as standalone services that require manual processing. These 

factors make it difficult to achieve rapid global optimization of measurement and test 

design. Seamlessly connecting components into an algorithmic framework alleviates 
bottlenecks and enables rapid co-optimization of experiments and measurements that do not 

meet scientific objectives. This includes converting process requirements into standard and 

numerical data. Although the use of this concept is limited, progress has been made in some 

areas, such as the use of deep learning techniques to improve optical correction and the 

design of search patterns of optical devices with adaptive algorithms.  
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Additionally, the in- tegration of observation tools and techniques, especially in areas such 
as black hole research, is monitored with careful observation. Additionally, many 

researchers have used instrument learning to design tools or considered instrument learning 

in their design processes. 

SPectr Ooscopy Ken Simulation (SPOKES) is the only successful cosmic experiment to 
date that completes the structure of the DESpec experimental model, from data collection 

to weak dark matter analysis. However, SPOKES does not yet include the creation of 

possible negative hypotheses that could accelerate the desired search, especially in areas 

where the theory is broad, such as dark matter and dark science. 

Continuous improvement in this area can be beneficial in several ways. These include 
creating twins of successful experiments, exploring the potential of instrument learning to 

improve design tools, and deriving design theories (which are now the basis of scientific 

research). In addition, it would be useful to conduct a cost-benefit analysis to evaluate 

energy consumption and the economic benefits of energy consumption. 

18.6 The Architectures of Instrument Learning: 

The unique data structure and laws of cosmology highlight the need for adaptive instrument 

learning. While early methods often used existing techniques in computer science, recent 

work has focused on developing methods specific to cosmological data. Ongoing and future 
work aims to meet these specific needs, marking the transition to more specialized systems 

for cosmological applications. The revolution in deep learning began in 2012 with the 

breakthrough in neural networks (CNN) such as AlexNet, which had a major impact on 

cosmology. Cosmological data are often represented as images and derived from CNNs, but 
the proposed model is used only for processing rectangles. New neural network 

architectures for cosmological applications have been designed to solve this limitation and 

extend biases such as translation and rotation to principles as diverse as the heavens. These 
include convolutional networks, translation- and rotation-invariant normalization flows, and 

fixed-kernel-based convolution architectures. These developments address specific needs 

in cosmology and differ from computer vision studies that focus on natural images. 

In cosmological studies, analysis of periodic data such as the light curves of type 1a 
supernovae poses a challenge due to inconsistencies and poor observations. While recurrent 

neural networks (RNNs), short-term memory networks (LSTMs), and Transformers are 

successful at classifying tasks, standard neural network architectures often lack flexibility 

for cosmological applications. It has been shown that inspired physical and non-physical 

neural networks can reduce the size and information required.  

However, existing architectures are not always suitable for cosmological needs and have 

their own limitations in handling parallel operations and remote learning. Efforts should be 

made to ensure integration and exchange between communities in order to link the 
development process in computer science with the needs of cosmology. An important 

example of this is the widespread use of interpolated physical systems in cosmology 

applications, thanks to the ease of use of pixelation models such as HEALPix. This situation 

shows the importance of cooperation and the process of transferring to cosmological rules. 
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It is important to identify and interpret instrument learning to ensure the reliability of 
findings. However, the adoption of descriptive intelligence (XAI) in the field of cosmology 

has been limited, in part due to the lack of a valid method for satisfactory cases. There is an 

urgent need to develop a system for these guidelines. Recent efforts such as post hoc 
application of signal regression methods to train neural networks have shown promise in 

improving model interpretation and discovery in cosmology and are expected to lead to 

further advances in this field in the future. 

18.7 Quantification of Uncertainty and Bias: 

Recent work in cosmology has focused on addressing these weaknesses and identifying 
explanations for the consequences of theoretical models such as deep relativity. These 

advances are important for the use of this technique in cosmology and the broader 

community. Key elements of analysis include uncertainty and quantity bias. However, 
further progress is needed to ensure widespread use of instrument learning in cosmology, 

high- lighting the importance of continued development in this field. 

Parameter inference is a function used in cosmological data analysis to describe physical 

parameters in pa- rameters represented by observations, such as the Λ CDM parameter. 

Originally, this task was viewed as a regression problem in supervised learning, where a 
neural network is trained to minimize the mean square error (MSE) between its output and 

the mode plan. While this method provides a maximum likelihood estimate (MLE), point 

estimates such as MLE are of limited scientific value for analysis in comparison of 
parameters with information, especially in cases where physical degeneracies exist between 

parameters. Furthermore, comparing and combining results from different experiments 

leads to undesirable consequences for decisions in cosmology. Uncertainty techniques such 

as Monte Carlo regression, Bayesian neural networks, and deep clustering have been 
developed in instrument learning. However, their direct application in cosmology is 

hampered by the difference in the terms used to describe the uncertainty of the two positions. 

While instrument learning distinguishes between determinism and uncertainty (data and 
model uncertainty, respectively), these concepts are not fully consistent with the concepts 

of statistics and perturbation in physics, causing confusion.  

The difference in the perception of uncertainty between instrument learning and physics can 

be attributed to their focus on different types of uncertainty. In instrument learning, the 
model usually refers to the learning model itself, while in physics, the model consists of 

physical processes, including the data generation process. Methods used to account for 

uncertainty in instrument learning must be adapted to physical applications to adequately 

account for the uncertainty associated with the data generation process. However, even in 

simple physical systems, these systems can produce inaccurate or erroneous predictions. 

Probabilistic instrument learning, especially within the scope of simulation-based inference 

(SBI), is promising for scientific applications such as cosmology. This method aims to 

estimate the full Bayesian posterior, likeli- hood, or probability, even if the probability of 
the data generation process is not available or cannot be affected. Instead, the structure of 

the data and parameters can be simulated using a forward model. This method is related to 

Approximate Bayesian Calculus (ABC), which is widely used in cosmology.  
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In SBI, domain-specific neural networks or predicted aggregate statistics are used as input 
to a parametric classifier or density estima- tor to predict the quantity of interest (e.g., after 

or to be). Cosmology contributes to the development of SBI methods and algorithms. 

In instrument learning, training parametric classifiers and density parameters for simulation-

based inference (SBI) can be difficult and often requires a series of simulations and 
calibrations to obtain good results. Recent findings show that widely used SBI algorithms 

can produce reliable posterior estimates that are unacceptable in cosmological applications. 

To solve this problem, it is important to perform a diagnostic test to verify that the learning 

instrument’s learning-based predictions are well calibrated and statistically similar. These 
efforts are necessary for the development of simulation-based theories that lead to scientific 

discoveries. 

18.8 Education and Promotion: 

Data-driven evolution in cosmology is accelerating, driven by open-source software and 

publicly available data, providing revolutionary opportunities to support the scientific 
community and expand the impact of research. To realize this vision, interdisciplinary 

training is needed to equip researchers with the skills to navigate dis- parate data and 

collaborate effectively across fields. In addition, effective promotional programs aimed at 
the general public are necessary to attract a broad audience and stimulate artistic awareness 

and interest beyond traditional boundaries. 

To keep up with advances in data-driven cosmology, scientists must have a variety of skills, 

including physics, statistics, and data science. While traditional physics courses provide the 

foundation, additional resources such as massive open online courses (MOOCs) and 
academic journals are essential for disseminating knowledge. However, there is a need for 

physicist-centered knowledge and data based approaches that expand scientific knowledge. 

The Interdisciplinary AI Center and Open Workshop Series encourage collaboration and 
knowledge exchange, but efforts to foster discussion and classroom development must 

continue. Additionally, financial institutions need to prioritize diversity, inclusion and 

equity initiatives to expand collaboration in this area. 

Cosmologists are exploring new ways to leverage advances in technology and online 
platforms to engage with the public. Electronic devices provide opportunities for interactive 

simulations and graphs, while participation in online learning communities and instrument 

learning tools can facilitate access to the dataset. Public compe- titions like PLAsTiCC on 

platforms like Galaxy Zoo and Kaggle have proven successful in garnering hundreds of 
entries. However, it is important to recognize that these measures may not be effective in 

reaching vulnerable populations and may propagate inadequate education. Special training 

and consultancy is needed to solve this problem. 

18.9 Conclusion: 

In summary, the intersection of cosmology and instrument learning offers great 
opportunities for discovery and public engagement. Advances in data-driven cosmology 

require expertise in the integration of physics, statistics, and data science.  
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Educational initiatives, including massive open online courses (MOOCs) and intellectual 
property forums, play an important role in training the next generation of researchers. 

Additionally, efforts to engage a broader audience through interactive sessions, online 

communities and public campaigns are ongoing, but these need to be coordinated in an 
integrated and accessible way. By recognizing these opportunities and solving problems, 

the cosmological community can support a more efficient and effective economic system. 
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