
Cloud Computing https://www.kdpublications.in

ISBN: 978-81-978152-4-9

74

7. Cloud Native Application

Neha Bape

Assistant Professor, IT Department,

S.M.T. Jankibai college of Arts, Science & Commerce,

Kalwa, Thane Maharashtra.

7.1 What Is Cloud Native:

The software method known as "cloud native" is used to develop, implement, and

oversee contemporary applications in cloud computing settings. The goal of modern

businesses is to create apps that are incredibly durable, scalable, and adaptable so

they can easily upgrade them to suit changing client needs. They accomplish this by

utilizing cutting-edge methods and instruments that naturally facilitate application

development on cloud infrastructure. Adopters gain a creative, competitive edge

from these cloud-native technologies, which enable quick and frequent updates to

apps without affecting service delivery.

Cloud-native applications: what are they?

Applications that are cloud-native are composed of several tiny, interconnected

services known as microservices. In the past, programmers created monolithic apps

with a single block structure holding all necessary features. Software engineers

divide up the capabilities into smaller microservices by employing the cloud-native

methodology. Because these microservices are self-contained and require little

processing power to operate, they increase the agility of cloud-native apps.

Cloud-native applications compared to traditional enterprise applications:

Less flexible software development techniques were used in the creation of

traditional enterprise apps. Before making a significant batch of software

Cloud Native Application

75

functionalities available for testing, developers usually worked on them. Because of

this, deploying traditional enterprise apps was slower and they were not scalable.

Conversely, cloud-native applications are extremely scalable across various

platforms and employ a collaborative methodology. In cloud-native apps,

developers employ software tools to greatly automate the processes of building,

testing, and deploying applications. Microservices allow for fast setup, deployment,

and duplication of operations that are not feasible with traditional applications.

7.1.1 What is the CNCF?

An open-source group called the Cloud Native Computing group (CNCF) assists

businesses in launching their cloud-native initiatives. The CNCF was founded in

2015 with the goal of assisting the open-source community in creating essential

cloud-native components, such as Kubernetes. Amazon is a CNCF member.

What Is Cloud-Native Application Architecture?

Development teams can create and execute scalable cloud-native applications by

combining software components found in the cloud-native architecture. The

building pieces of cloud-native architecture are listed by the CNCF as immutable

infrastructure, microservices, declarative APIs, containers, and service meshes.

Unchangeable infrastructure:

When cloud-native apps are hosted on servers with immutable infrastructure, the

servers stay the same after they are deployed. The old server is deleted and the

program is relocated to a new high-performance server if it needs additional

processing power. Immutable infrastructure makes cloud-native deployment

predictable by eliminating the need for manual upgrades.

Cloud Computing

76

Small-Scale Services:

Micro services are discrete, standalone software elements that work together to

construct full cloud-native applications. Every microservice concentrates on a

single, tiny issue. Microservices are autonomous software components that interact

with one another because they are loosely connected. Developers work on individual

micro services to make modifications to the application. In this manner, in the event

that one micro service fails, the program will still work.

API:

Information sharing between two or more software programs can be done using the

Application Programming Interface (API). These loosely coupled microservices are

connected by APIs in cloud-native applications. Instead of outlining how to get

there, the API tells you what information the microservice needs and what kinds of

outputs it can produce.

Mesh services:

A software layer in the cloud infrastructure called service mesh controls how many

microservices communicate with one another. By using the service mesh,

programmers can add new features to their applications without having to update

the code.

7.2 Containers:

The smallest computational unit in a cloud-native application is called a container.

In cloud-native systems, they are software components that bundle the microservice

code and other necessary files.

Cloud-native apps operate independently of the underlying hardware and operating

system thanks to the containerization of the microservices.

Cloud Native Application

77

This implies that cloud-native apps can be implemented by software developers on-

site, on cloud infrastructure, or on hybrid clouds. Containers are used by developers

to package microservices along with their necessary dependencies, which include

the libraries, scripts, and resource files needed for the primary application to

function.

7.2.1 The Advantages of Containers:

Among the advantages of containers are:

1. Utilizing less processing power than traditional application deployment

2. They can be used practically immediately.

3. Scaling the cloud computing resources your application needs can be done

more effectively.

What is the creation of cloud-native applications?

The process and locations by which developers create and implement cloud-native

apps are outlined in cloud-native application development. A shift in mindset is

necessary for cloud-native programming. In order to reduce the time required for

software delivery and provide precise features that satisfy evolving customer

expectations, developers implement particular software methods. Below are a few

standard cloud-native development techniques.

Continuous Integration:

Developers that use continuous integration (CI) routinely and error-free incorporate

changes into a common code base. Development is more efficient when small,

frequent modifications are made since problems may be found and fixed more

quickly. Development teams can add new features with more confidence since

continuous integration (CI) systems automatically evaluate the quality of the code

for each change.

Cloud Computing

78

DevOps:

DevOps is a software culture that enhances the cooperation between teams working

on development and operations. It is a cloud-native model-aligned design

philosophy. Organizations can accelerate the software development lifecycle by

implementing DevOps methods. DevOps tools are used by developers and operation

engineers to automate cloud-native development.

Serverless Computing:

A cloud-native approach known as "serverless computing" gives the cloud provider

complete control over the underlying server infrastructure. Because cloud

infrastructure automatically expands and configures to match application

requirements, serverless computing is popular among developers. Only the

resources used by the program are paid for by the developers. When an application

terminates, the serverless architecture immediately releases the computational

resources

7.2.2 What Are the Benefits of Cloud-Native Application Development?

Quicker growth:

The cloud-native approach is used by developers to produce applications of higher

quality in less time. Using DevOps techniques, developers create ready-to-deploy

containerized apps rather of depending on particular hardware infrastructure. This

enables developers to react swiftly to modifications. They can update the software

multiple times a day, for instance, without having to close it.

Platform autonomy:

Developers may be confident in the consistency and dependability of the operating

environment when they create and implement apps in cloud environments.

Cloud Native Application

79

The cloud provider takes care of hardware mismatch, so they don't need to worry

about it. As a result, rather of concentrating on establishing the underlying

infrastructure, developers can concentrate on providing value in the app.

Economical operations:

Only the resources that your program really utilizes are charged for. As an

illustration, if your user traffic

7.3 An Example Cloud-Native Applications:

A web-based e-commerce platform, such an online clothes store, would be a basic

example of a cloud native application.

The program would be packed as a collection of containers, each of which would

have a distinct purpose, such as the payment service, database, and web front-end.

This process is known as containerization.

Each part of the program would be a separate service that interacts with other

services via APIs because it would use a microservices design.

The application would deploy and manage the cloud-based containers using

automation tools like Kubernetes.

A continuous integration and delivery (CI/CD) pipeline would be used by the

application, enabling more frequent and quicker releases.

With characteristics like load balancing, auto-scaling, and self-healing, the

application would be built to withstand failures.

In this scenario, the cloud environment's scalability, availability, and affordability

would be utilized by the e-commerce platform to manage a high volume of users

and transactions.

Cloud Computing

80

Furthermore, deployment and management are made simple by the use of containers

and micro services, while development and deployment are accelerated by the use

of automation tools and CI/CD pipeline.

7.4 Last Observation:

All things considered, cloud native applications provide a novel approach to

developing and implementing software that fully utilizes the cloud computing

paradigm. They are perfect for operating in a cloud environment because of their

high levels of scalability, availability, and resilience to failures.

