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13.1 Introduction:  

In the socio-economic perspective, almost every variable is subject to influence of multiple 

other variables. For example, simply weight of a group high-school students, studying in a 

class, does not depend on age alone. Besides age, it depends on heredity, height, family 
income, nutrition, physical exercise, etc. Likewise, the relationship of a macroeconomic 

variable with its predictors is not a simple bi-variate relation. Contrary to this, many of the 

economic relationships are multi-variate relationships. For example, GDP is a function of 
multiple explanatory variables such as size of FDI (X1) inflow, domestic capital formation 

(X2), foreign trade (X3), governmental expenditure (X4), foreign aids (X5) and many other 

variables. Thus, a researcher begins his research with a hypothetical relationship, expressed 

as below: 

Y = β0 + β 1X1 + β 2X2 + β 3X3 + β 4X4 + β 5X5 + et 

Where Y is the dependent variable and Xis are multiple predictors (explanatory variables) 
explaining increase of Y. The coefficient βi is the sensitivity of the variable i. This initiates the 

beginning of a multivariate analysis.  

The relationship stated above stands valid only when all the assumptions of OLS are duly 

satisfied. One of the assumptions of OLS requires that the explanatory variables X1, X2, X3, 

X4, etc., should not be linearly correlated with each other. If the explanatory variables X1, X2, 
X3, X4, etc., appear linearly correlated with each other, the phenomenon is defined as 

multicollinearity, which takes a researcher to a paradoxical situation [Zikmund, W.G., et al 

(2016)]. In this paper we propose to unfold the paradoxical situations confronted by a 
researcher with simple numerical examples. This is supposed to enable the researchers to take 

appropriate precautions before drawing the final inference from a model.  

In short, the explanatory variables should be orthogonal, meaning not related with each other. 

However, in practice, many of the explanatory variables (predictors) move together in an inter-

related fashion. Agricultural production, industrial production, consumption, income tax 

collection and many other macro-variables move together, at least, in terms of direction.  

In other words, when there is up (boom), there is up; when there is down (recession), there is 

down. This makes many macro-variables become inter-correlated with each other. This is the 

root cause behind the multicollinearity of time-series data.  
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Multi-collinearity is not necessarily limited to time-series data. It can occur in cross-section 

data, as well, when the explanatory variables have inherent causal relationship.  

13.2 Consequences of Multicollinearity: 

While analyzing multivariate data, researchers focus lies on the determination of the estimates 

of the coefficients β1 β2, β3, etc.  

Theoretically, the presence of perfect linear relationship between the explanatory variable 

makes the parameters β1 β2, β3 etc undefined. Using a simple hypothetical relation, consisting 

of two explanatory variables X1 and X2, we show how the coefficients become undefined.    

Say the hypothetical relationship is written as below: 

Y = β0 + β1x1 + β2x2 

The formula of β1 is  

β1 = 
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We propose to examine how β1 becomes undefined. We presume that there is a linear 

relationship between X1 and X2. The said relationship is represented by X2 = kX1. While writing 

kx1 for x2 in above equation, the formula gets transformed as below: 
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That is, presence of multi-collinearity renders the coefficients β1 undefined. This is true in 

case of β2 as well. It makes multivariate analysis becomes meaningless. However, the escape 

is that, in reality, the correlation coefficient between two explanatory variables is neither 

perfect (r  =1), nor zero. 

It lies between the two, i.e., 0 ≤ r ≤ 1. As the degree of correlation between explanatory 

variables increases the regression coefficients continues to become unstable.  
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In the words of Field, Andy (2016) presence of multicollinearity makes the coefficients almost 
unreliable. In the words of Koutsoyiannis, A. (1996) the coefficients become unstable, as 

sample size is increased or more correlated variables are incorporated into the model. 

Field Andy (2016) observes the consequences of multicollinearity on three different aspects 

of multivariate analysis. These are value of the coefficients β1 β2, β3 etc., measure of goodness 

of fit R2 and sensitivity of the predictors. Firstly, the author points that the coefficients β1 β2, 

β3 etc. appear unreliable. Secondly, the goodness of fit, R2 remains unaffected even when the 

extra predictors are added to the model or withdrawn from the model. These two points have 

been explained with a case of numerical example in the following paragraphs.  

13.3 Advertisement and R&D Expenditure: A Case of Multicollinearity 

Consider the data on ‘Sales Revenue, R&D and Advertisement’ given in the table below 

(Table 1). We begin with a belief that advertisement and R&D add to the sales revenue of the 

firm. Therefore, advertisement and R&D are predictors, while sales revenue is the dependent 
variable. For computing the regression coefficients, it requires us to assume that there is no 

relationship between R&D and Advertisement. However, we have taken a data-set, where the 

predictors, advertisement and R&D, are linearly correlated. The purpose of this example is to 

bring to light the consequences of multicollinearity.  

Table 13.1: Measuring the Impact of R&D and Advertisement on Sales Revenue 

 Figures are in $ billion 

Advertisement 10 12 11 10 13 15 19 21 22 26 

   R&D Outlay 3 4 3 3 4 5 6 7 7 8 

Sales Revenue 45 50 47 54 50 59 62 65 66 73 

We begin with estimating the relationship of sales with individual predictors, advertisement 

and R&D, separately. When multicollinearity is fully absent, the coefficient of a predictor 

obtained from simple regression becomes almost equal to the coefficient of the predictor 
obtained from a multivariate regression. However, presence of multicollinearity gives a 

misleading result. We propose to verify this from the analysis of subsequent paragraphs. 

Definitely, our calculation is based on the data given above in Table 1.  

Table 13.2 Shows the Coefficient Table of Simple Relationship of Sales with 

Advertisement. 

Table 13.2: Coefficients
a
 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 32.341 2.917  11.088 .000 

ADV 1.557 .174 .954 8.967 .000 

a. Dependent Variable: SALES 
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The coefficient of advertisement is statistically significant. It means that advertisement has 

strong influence on sales. Goodness of fit of the model is 91%.  In short, the equation of sales 

on advertisement can be written as below 

 

 

While computing simple regression equation of sales on R&D, we find the following output 

as shown in Table 13.3 

Table 13.3: Coefficients
a
 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) 33.506 2.744  12.209 .000 

R&D 4.719 .517 .955 9.131 .000 

a. Dependent Variable: SALES 

The result as shown in Table 13.3 reflects that the coefficient of R&D is statistically 
significant. In other words, there is strong influence R&D on sales. Goodness of fit is 91%. In 

short, the equation of sales on R&D can be written as: 

 

 

In practice, it is found that every success of R&D requires the company to make an additional 

advertisement to address the audience about the new features of the product.   

So, a higher the level of expenditure on R&D, higher is the level of advertisement expenditure.  

That is, two explanatory variables are linearly correlated with each other. Actual measure of 

correlation between two predictors, advertisement and R&D is 99%.  

Now we propose to incorporate both the predictors in a single model and study the 

consequences of multicollinearity. On the line of the relationship such as Y = β0 + β1x1 + β2x2, 

we initially write that  

SALES = β0 + β1 (ADV) + β2 (R&D) 

The SPSS output of multiple regression is briefly stated as below:  

 

 

SALES = 32.34 + 1.557(ADV) R2 = 0.91 

 (8.96)  (11.08) t - Statistic 

 SALES = 33.50 + 4.719(R&D) R2 = 0.91 

 (9.13)  (12.21) t - Statistic 

      SALES = 33.50 + 0.63ADV+ 2.82(R&D) R2 = 0.91 

 (0.45)  (10.45) t - Statistic  (0.67) 
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Table 13.4 shows the ANOVA table and Table 5 presents the table of the coefficient. These 

are obtained as elements of SPSS output.  

Table 13.4: ANOVA
a
 

Model Sum of 

Squares 

df Mean Square F Sig. 

1 

Regression 714.492 2 357.246 37.657 .000b 

Residual 66.408 7 9.487   

Total 780.900 9    

a. Dependent Variable: SALES 

b. Predictors: (Constant), ADV, R&D 

Table 13.5: Coefficients
a
 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. 

Error 

Beta 

1 

(Constant) 32.937 3.151  10.453 .000 

ADV .633 1.391 .387 .455 .663 

R&D 2.821 4.210 .571 .670 .524 

a. Dependent Variable: SALES 

The findings (Table 13.4 and Table 13.5) are really puzzling, because the regression is 
statistically significant, because ANOVA table indicates that F is statistically significant 

(much better than 1% level); however, the coefficients of the predictors, advertisement and 

R&D, are statistically insignificant. Now on the basis of above three outputs, we can 

summarize the observations as below: 

a) Firstly, the coefficients of the predictors, advertisement and R&D, obtained from 

multivariate regression are much lower (See Table 13.5) compared to the corresponding 

values obtained from simple regression analysis.  

b) The coefficients of the predictors in the coefficient table of multiple regression (see Table 
13.5) are statistically insignificant, while the corresponding coefficients were significant 

in the outputs of simple regression, where we assessed the effect of individual predictor 

on sales separately.  
c) Thirdly, goodness of fit, R2 is same in all three outputs. It shows that if there is perfect 

multicollinearity, addition of linearly correlated variables does not improve the goodness 

of fit.  

d) Standard Errors of the coefficients obtained in multiple regression analysis are several 
times higher than their original Standard Errors. This point is discussed in greater details 

in the following paragraph. 
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13.4 Multicollinearity and Standard Error of Coefficients: 

Theoretically, presence of multicollinearity magnifies the size of Standard Errors of the 

coefficients. The same can be proved as below:  
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Standard Error (β1) = =)( 1Var  

Table 13.6: Multi-collinearity and the Stand Error of the Coefficients: 

Simple Regression Multiple Regression 

Predictor Standard Error(βi) Predictor  Standard Error(βi) 

Advertisement 0.174 Advertisement 1.39 

R&D 0.517 R&D 4.21 

Table 13.6 reflects that the Standard Errors of the coefficients shown under multiple regression 

column are several times higher than the corresponding standard errors obtained in simple 

regression analysis. In an ideal situation, while there would exists no multicollinearity, the 
coefficients of the predictors and their corresponding Standard Errors, as obtained from simple 

regression analysis would remain identical with their corresponding values computed from 

multiple regression model. In other words, in the absence of multicollinearity the results of 
simple regression analysis and those of the multiple regression analysis would be identical. 

Unfortunately, this did not happen in our analysis. Existence of Multicollinearity results in 

exaggerated value of Standard Error of the regression coefficients, which leads to abnormally 

lower value of the computed t-statistic. This leads the researcher to infer that regression 
coefficients are statistically insignificant, even though the goodness of fit of the regression is 

quite satisfactory (accepted through F-Test).  

Table 13.7: Collinearity and Goodness of Fit 

Influence of Regression Equation Goodness of Fit 

ADV on SALES SALES = 32.34 + 1.557(ADV) R2 = 0.91 

R&D on SALES SALES = 33.50 + 4.719(R&D) R2 = 0.91 

ADV and R&D on SALES  SALES = 33.50 + 0.63ADV+ 2.82(R&D) R2 = 0.91 
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Table 13.7 compiles R2 values obtained in different trials of assessing the effects of 

Advertisement and R&D on sales. Surprisingly, R2, the goodness fit, remains unaffected (R2 

= 0.91) in all three trials. It means multicollinearity does not reduce or increase the goodness 

of fit. Addition or withdrawal of a similarly correlated variable leaves no effect on goodness 

of fit. 

13.5 The Gravest Consequence of Multicollinearity: 

Now we propose to take another example with time-series data. The table (Table 13.8) 

contains data relating to five variables. To note, here X1 is dependent variable and remaining 

other variables X2, X3, X4 and X5 are predictors. This example will draw attention to the 

gravest consequence of multicollinearity.  

Table 13.8: Linearly Correlated Predictors: Time-series Data  

Year X1 X2 X3 X4 X5 

1 23.31 15.05 30.38 25.21 18.88 

2 32.98 16.24 27.15 22.6 16.71 

3 10.37 21.92 31.48 11.66 17.07 

4 48.48 32.69 39.99 25.55 10.69 

5 20.17 37.02 45.19 34.68 29.68 

6 -17.6 17.48 23.59 22.27 22.14 

7 6.11 10.31 11.72 1.27 7.79 

8 19.06 8.29 10.36 3.24 7.26 

9 18.65 6 6.38 0.12 2.83 

10 1.87 9.93 10.36 12.61 6.41 

11 -6.58 6.85 6.36 10.4 6.5 

12 3.36 2.58 1.53 3.96 -2.31 

13 1.07 6.87 7.33 13.87 10.46 

14 36.51 14.75 18.4 20.93 10.08 

15 50.98 18.56 24.27 23.05 19.34 

16 41.36 25.12 30.96 18.5 22.46 

17 35.37 26.73 32.66 35.2 32.39 

18 10.46 27.82 31.64 21.96 30.57 

19 27.1 17.38 19.92 7.67 14.83 

20 11.26 18.95 19.94 15.25 20.09 

21 18.17 14.14 14.47 16.34 22.3 

22 6.45 10.07 10.16 1.36 18.11 

23 12.79 7.92 6.1 3.67 14.24 
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Year X1 X2 X3 X4 X5 

24 -3.25 8.08 7.58 7.5 7.47 

25 13.77 6.73 5.92 2.41 5.3 

26 -3.09 12.12 11.21 5.23 -2.03 

27 -4.91 8.86 8.97 15.65 7.4 

28 6.96 6.08 5.14 1.28 7.34 

29 12.48 8.39 7.79 21.74 11.66 

One of the methods of detecting multicollinearity is scanning the correlation matrix. Looking 

at the correlation matrix [See Table 13.9], it is observed that the variables X2, X3, X4 and X5 
are strongly correlated with each other. Hence, this analysis is undertaken with the advance 

information that there is multicollinearity. Our objective is to point to the worst consequence 

that multicollinearity can produce. We adopt the approach called management by exception, 

i.e., learning from the mistakes.  

Table 13.9: Correlation Matrix 

 X1 X2 X3 X4 X5 

X1 

Pearson Correlation 1 .521** .556** .462** .349* 

Sig. (1-tailed)  .002 .001 .006 .032 

N 29 29 29 29 29 

X2 

Pearson Correlation .521** 1 .962** .771** .749** 

Sig. (1-tailed) .002  .000 .000 .000 

N 29 29 29 29 29 

X3 

Pearson Correlation .556** .962** 1 .805** .742** 

Sig. (1-tailed) .001 .000  .000 .000 

N 29 29 29 29 29 

X4 

Pearson Correlation .462** .771** .805** 1 .723** 

Sig. (1-tailed) .006 .000 .000  .000 

N 29 29 29 29 29 

X5 

Pearson Correlation .349* .749** .742** .723** 1 

Sig. (1-tailed) .032 .000 .000 .000  

N 29 29 29 29 29 

We want to begin with a simple regression equation of two variables, one predicted and the 

other a predictor. We take X2 is a predictor of X1. Table 10 shows the coefficient table obtained 

from regression output of X1 on X2.  

Based on the entries of Table 13.10, we construct the following equation.   

 

 

 X1 = 0.178 + 1.013 X2 R2 = 0.27 

 (3.173)  (.033) t - Statistic 
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Table 13.10: Coefficients
a
 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 
(Constant) .178 5.394  .033 .974 

X2 1.013 .319 .521 3.173 .004 

a. Dependent Variable: X1 

The result shows that X2 has a positive influence on the value of X1. As per indications of 

ANOVA table (not shown here), the regression is statistically significant (at 1% level).  

Subsequently, we add X3 and X4 to the model. Table No 11 shows the Coefficient Table. It 

shows a negative coefficient for X2.  

This coefficient was positive in simple regression output, shown in Table 13.10. But with 

addition of new variables, it turns negative. This is the gravest consequence of 

multicollinearity. Table No 12 shows the Coefficient Table, when all four collinear variables 

are introduced.  

Table 13.11: Three Predictors’ Coefficients
a
 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) 1.817 5.740  .316 .754 

X2 -.335 1.176 -.172 -.285 .778 

X3 .977 .921 .689 1.060 .299 

X4 .068 .468 .041 .145 .886 

a. Dependent Variable: X1 

 

Table 13.12: Four Predictors’ Coefficients
a
 

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

B Std. Error Beta 

1 

(Constant) 2.407 5.899  .408 .687 

X2 -.181 1.219 -.093 -.148 .883 

X3 .972 .933 .685 1.041 .308 

X4 .166 .502 .099 .331 .744 

X5 -.302 .505 -.162 -.598 .556 

a. Dependent Variable: X1 
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This is needless to say that in case of each output, in the light of ANOVA Table data, 

regression appeared significant. However, the paradox is that when we read all three tables 

[Table 13.10, Table 13.11 and Table 13.12] simultaneously, the coefficient of X2 changes from 

1.013 in Table 10 to - 0.335 in Table 13.11. It again changes to – 0.181 in Table 13.12 in the 
third trial.  

In short, the coefficient of same predictor X2 is fluctuating from one trial to another trial. 

Fluctuation is occurring to the coefficients of all other variables too (such as X3 and X4).  

Koutsoyiannis (1996) points to this fact and states that the values of the coefficients become 

unstable as additional collinear variables are added to the model.  

The very crucial drawback of multicollinearity is that the effect of an individual variable on 

the predicted variable gets eliminated by the influence of other linearly correlated variables.  

As a result, measuring the marginal effect of changing a variable by one unit becomes 

thoroughly useless.  

In other words, presence of multicollinearity makes it very difficult to assess the relative 

importance of a variable.  

13.6 Multicollinearity Diagnostic: 

Scholars can construct the correlation matrix to trace the presence of multicollinearity.  

The presence strong correlation between the predictors is taken as the indication of the 

presence of multicollinearity. Second alternative is to look at the Standard Errors of the 

coefficients.  

However, none of these criteria is a satisfactory indicator multicollinearity (Koutsoyiannis, 

A., 1996).  

SPSS software provides two multicollinearity diagnostics called Variance Inflation Factor 

(VIF) and Tolerance; these are quite efficient as well as a globally recognized index for 

measuring collinearity.  This comes to the great help of the researchers today. 

The VIF indicates whether a predictor has strong linear relationship with other predictors.  

Given the computer is already loaded with SPSS, we demonstrate the steps involved in the 

process of conducting collinearity test.   

While the data-set is ready, click on ‘analyze’ located on upper menu bar, choose 

‘Regression’ from the list of analysis; then chose ‘Linear’ [In short, Analyse →Regression 

→ Linear].  

This will open the dialogue box of Linear Regression, a picture of which is given below:  
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This dialogue box requires a researcher to enter dependent variable and independent variables 

(predictors) in identified boxes.  He is supposed to enter X1 as dependent variable, remaining 
other predictors X2, X3, X4 and X5 as independent variable. Now making a click on OK is 

enough to get regression output. If the researcher wants to examine multicollinearity, he has 

to make a click on statistics, shown at the top right corner of the dialogue box above; it opens 

a dialogue box shown below:  
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Given the above dialogue box, the researcher is select collinearity diagnostics and run the 
regression model. This gives the following outcome (see Table 13.13) with full VIF indices 

corresponding to each coefficient. 

Table 13.13: Coefficients 
a
 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients T Sig. 

Collinearity 

Statistics 

B Std. Error Beta Tolerance VIF 

 

(Constant) 2.504 5.916  .423 .676   

X2 -.198 1.222 -.102 -.162 .873 .072 13.924 

X3 1.028 .931 .725 1.104 .281 .066 15.198 

X4 .079 .483 .048 .164 .871 .338 2.963 

X5 -.273 .504 -.146 -.543 .592 .390 2.561 

a. Dependent Variable: X1 

Table 13.13 shows two different indices for measuring multicollinearity. These are VIF and 

Tolerance. There is no consensus as to which value of VIF can be taken as the index of a 

serious degree of multicollinearity.  Myers (1990) states that VIF equal to 10 is a limit of great 
concern. When VIF is less than 10, multi-collinearity is not likely to be hazardous. However, 

Hair J. F. et al (2010) states that VIF above 5 means there is multicollinearity. The rule of 

thumb is to take VIF equal to 5 as the cut-off point. It means if VIF is less than 5, the problem 

of multicollinearity is not severe.  

Tolerance Level, which is defined as 1/VIF, can also be used to measure severity of 

multicollinearity.  

Menard (1995) suggests that Tolerance Level below 0.2 is a matter of concern. It follows that 

as a rule of thumb we can accept VIF equal to 5 or Tolerance level 0.20 as the cut-off level. 

The both refers to the same cut-off level.  

We propose to apply VIF equal to 5 as the cut-off limit to the output shown in Table 13. While 
we look at Table 13, the table of coefficients, we notice that variable X2 and X3 have VIF more 

than 5. While predictors X3 and X4 have VIF below 5. It means the predictors X2 and X3 (with 

VIF more than 5) should be dropped from the model, while predictors X3 anmed X4 can be 
retained. Some experts point to the question of relevance. If X2 and X3 are predictors of 

primary importance in the model, as price in a demand function, the problem becomes more 

difficult to handle. In that case, the researchers have to rely on other methods, rather than 

depending on Multiple Regression.  

13.7 Remedies of Multicollinearity: 

If VIF is within the cut-off limit, the limited degree of multicollinearity is not likely to affect 

the findings of the model. While some of the unimportant predictors have strong 

multicollinearity, those predictors can be dropped from the model without affecting the spirit 

of the model.  
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However, if multicollinearity has serious effects on the coefficients of the predictors of 
primary importance some solutions are to be explored. There are many methods of handling 

multicollinearity. Some of the simple and useful remedies have been enlisted below: 

a. Increase the sample size: As sample size is increased, standard error of the coefficients 

continues to reduce; this enhances the values of t-statistic of the coefficients.  
b.  Principal Component Regression: This process involves transformation of group of 

linearly correlated predictors into an orthogonal factor, say F1. Hence from a set of 

predictors a researcher may find two or three factors, which would be subsequently 
combined in a revised regression model, i.e., Y = α +βF1+ λF2+γF3. 

c. Using Additional Equation: Multicollinearity can be avoided by introducing an 

additional equation to the model by explaining the way predictors are related with 

each other. Say, X1 +2X3 +0.5X3 = 10 

Besides above, many other remedies are there. Interested readers can check textbook of 

Econometrics enlisted below.   
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